Contents

Part I The Basics of R

1 Calculating with R ... 3
 1.1 Installing R .. 3
 1.1.1 Demos ... 3
 1.2 Finding help with R .. 4
 1.3 Some interface aids ... 4
 1.4 Arithmetic ... 5
 1.5 Complex numbers ... 5
 1.6 Assigning variables ... 6
 1.6.1 Example: Conversions between units 6
 1.7 Standard mathematical functions 7
 1.7.1 Rounding ... 8
 1.8 Vectors ... 8
 1.8.1 Operations on vectors ... 9
 1.8.2 Functions that operate on vectors 10
 1.8.3 Character vectors .. 11
 1.9 Generating sequences .. 11
 1.9.1 Generating regular sequences 11
 1.9.2 Generating sequences of random numbers 12
 1.10 Logical vectors .. 13
 1.11 Matrices ... 14
 1.11.1 Arithmetic operations on matrices 15
 1.11.2 Matrix multiplication ... 16
 1.11.3 Determinant of a matrix 16
 1.11.4 Transpose of a matrix .. 17
 1.11.5 Diagonal matrix ... 17
 1.11.6 Matrix inverse ... 17
 1.11.7 Eigenvalues and eigenvectors 18
 1.11.8 Other matrix functions 19
 1.12 Other data structures .. 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.12</td>
<td>Data frames</td>
<td>19</td>
</tr>
<tr>
<td>1.12</td>
<td>Factors</td>
<td>19</td>
</tr>
<tr>
<td>1.12</td>
<td>Lists</td>
<td>20</td>
</tr>
<tr>
<td>1.13</td>
<td>Problems</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Plotting with R</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>Some common plots</td>
<td>23</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Data plot</td>
<td>23</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Bar plot</td>
<td>25</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Function plot</td>
<td>26</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Histogram</td>
<td>26</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Three-dimensional plot</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Customizing plots</td>
<td>28</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Different plot characters</td>
<td>28</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Plotting data with a line</td>
<td>29</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Adding title and axis labels</td>
<td>31</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Adding colors</td>
<td>31</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Adding straight lines to a plot</td>
<td>32</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Adjusting the axes</td>
<td>34</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Customizing ticks and axes</td>
<td>34</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Setting default graph parameters</td>
<td>35</td>
</tr>
<tr>
<td>2.2.9</td>
<td>Adding text to a plot</td>
<td>35</td>
</tr>
<tr>
<td>2.2.10</td>
<td>Adding math expressions and arrows</td>
<td>36</td>
</tr>
<tr>
<td>2.2.11</td>
<td>Constructing a diagram</td>
<td>37</td>
</tr>
<tr>
<td>2.3</td>
<td>Superimposing data series in a plot</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Placing two or more plots in a figure</td>
<td>42</td>
</tr>
<tr>
<td>2.5</td>
<td>Error bars</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>Locating and identifying points on a plot</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>Problems</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>Functions and Programming</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Built-in functions in R</td>
<td>49</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Sorting</td>
<td>50</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Splines</td>
<td>51</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Sampling</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>User-defined functions</td>
<td>52</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Gaussian function</td>
<td>52</td>
</tr>
<tr>
<td>3.2.2</td>
<td>pH titration curves</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Programming</td>
<td>55</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Conditional execution with if()</td>
<td>56</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Looping with for()</td>
<td>56</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Looping with while()</td>
<td>57</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Looping with repeat</td>
<td>58</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Choosing with which()</td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>Numerical analysis with R</td>
<td>58</td>
</tr>
</tbody>
</table>
3.4.1 Finding a zero of a function .. 59
3.4.2 Finding the roots of a polynomial 60
3.4.3 Solving a system of simultaneous linear equations 61
3.4.4 Solving a system of nonlinear equations 62
3.4.5 Numerical integration of functions 63
3.4.6 Numerical integration of data using splinefun 64
3.4.7 Numerical differentiation ... 64
3.5 Problems ... 65

4 Data and Packages .. 69
4.1 Writing and reading data to files 69
4.1.1 Changing directories .. 69
4.1.2 Writing data to a file ... 70
4.1.3 Reading data from a file using scan() 70
4.1.4 Writing and reading tables .. 71
4.1.5 Reading and writing spreadsheet files 71
4.1.6 Saving the R environment between sessions 71
4.2 Packages ... 72
4.3 Data frames ... 73
4.4 Factors ... 75
4.5 The contributed package seqinr 76
4.6 Problems ... 81

Part II Simulation of Biological Processes

5 Equilibrium and Steady State Calculations 85
5.1 Equilibrium in reacting mixture 85
5.1.1 Binding of a ligand L to a protein or polymer P 85
5.1.2 Fitting binding data with a Scatchard plot using linear
model (lm) ... 87
5.1.3 Strong and weak binding ... 89
5.1.4 Cooperative binding ... 90
5.1.5 Oxygen binding by hemoglobin 92
5.1.6 Hill plot ... 94
5.1.7 Experimental determination of equilibrium constants 96
5.1.8 Temperature dependence of equilibrium constants: the
van’t Hoff equation .. 97
5.2 Single strand–double helix equilibrium in oligonucleotides 98
5.3 Steady-state enzyme kinetics .. 103
5.3.1 Michaelis-Menten kinetics .. 103
5.3.2 Lineweaver-Burk fitting ... 104
5.3.3 Eadie-Hofstee fitting ... 106
5.3.4 Competitive inhibition ... 108
5.4 Non-linear least-squares fitting 109
5.5 Problems ... 110
Differential Equations and Reaction Kinetics

6.1 Analytically solvable models
- Exponential growth
- Exponential decay
- Chemical Conversion
- Exponential decay to a constant value
- Model of limited growth
- Kinetics of bimolecular reactions

6.2 Numerical integration of ODEs
- Integrating a single ODE by the Euler method
- Integrating a system of ODEs by the Euler method
- Integrating a system of ODEs by the improved Euler method
- Integrating a system of equations using 4th-order Runge-Kutta
- lsoda, a sophisticated differential equation solver
- Stability of systems of ODEs
- Numerical solution of second-order ODEs

6.3 Stochastic differential equations

6.4 Problems

Population Dynamics

7.1 Models of homogeneous populations of organisms
- Verhulst-Pearl (logistic) equation
- Variable carrying capacity and the logistic
- Lotka-Volterra model of predation
- Modifications of the Lotka-Volterra model
- Volterra’s model for two-species competition

7.2 Models of microbial growth
- Monod model of microbial growth
- Microbial growth in batch culture and chemostat
- Multiple limiting nutrients
- Competition for limiting nutrients
- Toxic inhibition of microbial growth

7.3 Models of Epidemics
- The simple SIR model
- The SIR model with births and deaths
- SI model of fatal infections
- SIS model of infection without immunity
- A model for an epidemic of gonorrhea

7.4 Problems

Diffusion and Transport

8.1 Transport by simple diffusion
- Fick’s laws of diffusion
- Analytical solutions of Fick’s second law in one dimension
8.1.3 Numerical solutions of Fick’s second law in one dimension 163
8.1.4 Diffusion in spherical and cylindrical geometries 165
8.2 Diffusion in a driving field: electrophoresis 166
8.3 Countercurrent diffusion 166
8.4 Diffusion as a random process: Brownian motion 167
8.5 Compartmental models in physiology and pharmacokinetics 169
 8.5.1 Periodic dose administration to a single compartment 170
 8.5.2 Liver function—A two-compartment model 170
 8.5.3 Multi-compartment model of liver function 171
 8.5.4 Oscillations in calcium metabolism 172
8.6 Problems 172

9 Regulation and Control of Metabolism 175
 9.1 Successive enzyme reactions 175
 9.1.1 One-substrate, one-product reaction 176
 9.1.2 Successive one-substrate, one-product reactions 178
 9.1.3 Steady-state flux calculation 180
 9.2 Metabolic control analysis 181
 9.2.1 Flux control coefficients 182
 9.2.2 Elasticities 183
 9.3 Biochemical systems theory 184
 9.3.1 Linear pathway with feedback inhibition 185
 9.3.2 Transitions in reaction network behavior 186
 9.4 Problems 188

10 Models of Regulation 191
 10.1 Regulation of transcription: Feed-forward loops 191
 10.2 Regulation of signaling: Bacterial chemotaxis 193
 10.2.1 Modeling of chemotaxis as a biased random walk 194
 10.2.2 Robust model of chemotaxis 195
 10.3 Regulation of development: Morphogenesis 197
 10.3.1 Exponential morphogen gradients are not robust 198
 10.3.2 Self-enhanced morphogen degradation to form robust gradients 199
 10.3.3 Patterning in the dorsal region of Drosophila 200
 10.4 Problems 202

Part III Analyzing DNA and Protein Sequences

11 Probability and Population Genetics 207
 11.1 Some fundamentals of probability 207
 11.1.1 Review of basic probability ideas 207
 11.1.2 Conditional probability 208
 11.1.3 The law of total probability 208
 11.1.4 Bayes’ theorem 209
 11.2 Stochastic population models 210
Computer Simulation and Data Analysis in Molecular Biology and Biophysics
An Introduction Using R
Bloomfield, V.
2009, XVI, 321 p., Hardcover