This book presents a systematic, comprehensive treatment of analog and discrete signal analysis and synthesis and an introduction to analog communication theory. This evolved from my 40 years of teaching at Oklahoma State University (OSU). It is based on three courses, Signal Analysis (a second semester junior level course), Active Filters (a first semester senior level course), and Digital signal processing (a second semester senior level course). I have taught these courses a number of times using this material along with existing texts. The references for the books and journals (over 160 references) are listed in the bibliography section. At the undergraduate level, most signal analysis courses do not require probability theory. Only, a very small portion of this topic is included here.

I emphasized the basics in the book with simple mathematics and the sophistication is minimal. Theorem-proof type of material is not emphasized. The book uses the following model:

1. Learn basics
2. Check the work using benchmarks
3. Use software to see if the results are accurate

The book provides detailed examples (over 400) with applications. A three-number system is used consisting of chapter number – section number – example or problem number, thus allowing the student to quickly identify the related material in the appropriate section of the book. The book includes well over 400 homework problems. Problem numbers are identified using the above three-number system. Hints are provided wherever additional details may be needed and may not have been given in the main part of the text. A detailed solution manual will be available from the publisher for the instructors.

Summary of the Chapters

This book starts with an introductory chapter that includes most of the basic material that a junior in electrical engineering had in the beginning classes. For those who have forgotten, or have not seen the material recently, it gives enough
background to follow the text. The topics in this chapter include singularity functions, periodic functions, and others. Chapter 2 deals with convolution and correlation of periodic and aperiodic functions. Chapter 3 deals with approximating a function by using a set of basis functions, referred to as the generalized Fourier series expansion. From these concepts, the three basic Fourier series expansions are derived. The discussion includes detailed discussion on the operational properties of the Fourier series and their convergence.

Chapter 4 deals with Fourier transform theory derived from the Fourier series. Fourier series and transforms are the bases to this text. Considerable material in the book is based on these topics. Chapter 5 deals with the relatives of the Fourier transforms, including Laplace, cosine and sine, Hartley and Hilbert transforms.

Chapter 6 deals with basic systems analysis that includes linear time-invariant systems, stability concepts, impulse response, transfer functions, linear and nonlinear systems, and very simple filter circuits and concepts. Chapter 7 starts with the Bode plots and later deals with approximations using classical analog Butterworth, Chebyshev, and Bessel filter functions. Design techniques, based on both amplitude and phase based, are discussed. Last part of this chapter deals with analysis and synthesis of active filter circuits. Examples of basic low-pass, high-pass, band-pass, band elimination, and delay line filters are included.

Chapter 8 builds a bridge to go from the continuous-time to discrete-time analysis by starting with sampling theory and the Fourier transform of the ideally sampled signals. Bulk of this chapter deals with discrete basis functions, discrete-time Fourier series, discrete-time Fourier transform (DTFT), and the discrete Fourier transform (DFT). Chapter 9 deals with fast implementations of the DFT, discrete convolution, and correlation. Second part of the chapter deals the z-transforms and their use in the design of discrete-data systems. Digital filter designs based on impulse invariance and bilinear transformations are presented. The chapter ends with digital filter realizations.

Chapter 10 presents an introduction to analog communication theory, which includes basic material on analog modulation, such as AM and FM, demodulation, and multiplexing. Pulse modulation methods are introduced.

Appendix A reviews the basics on matrices; Appendix B gives a brief introduction on MATLAB; and Appendix C gives a list of useful formulae. The book concludes with a list of references and Author and Subject indexes.

Suggested Course Content

Instructor is the final judge of what topics will best suit his or her class and in what depth. The suggestions given below are intended to serve as a guide only. The book permits flexibility in teaching analysis, synthesis of continuous-time and discrete-time systems, analog filters, digital signal processing, and an introduction to analog communications. The following table gives suggestions for courses.
<table>
<thead>
<tr>
<th>Semester</th>
<th>Topical Title</th>
<th>Related topics in chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>One semester</td>
<td>Fundamentals of analog signals and systems</td>
<td>Chapters 1–4, 6</td>
</tr>
<tr>
<td></td>
<td>Systems and analog filters</td>
<td>Chapters 4, 5*, 6, 7</td>
</tr>
<tr>
<td>One semester</td>
<td>Introduction to digital signal processing</td>
<td>Chapters 4*, 6*, 8, 9</td>
</tr>
<tr>
<td>Two semesters</td>
<td>Signals and an introduction to analog communications</td>
<td>Chapters 1–4, 5*, 6, 8*, 10</td>
</tr>
</tbody>
</table>

*Partial coverage