Hardware-dependent Software (HdS) plays a key role in desktop computers and servers for many years. Recently, the relevance of HdS in the domains of embedded systems and Systems-on-Chip (SoCs) has significantly increased, mainly due to its flexibility, the possibility of late change, and the quick adaptability.

Modern SoCs, on a single die integrated embedded systems, often contain multiple programmable cores, including general purpose processors, digital signal processors (DSPs), and/or application specific instruction set processors (ASIPs) requiring a large amount of low level software. Mobile phones and automotive control systems meanwhile come with complex boot loaders and include multiple communication protocol stacks of considerable size. Here and in many other application areas, the number and complexity of standards that need to be supported have steadily grown. For mobile phones, for instance, the set of currently expected standards includes GSM, GPRS, EDGE, UMTS, Bluetooth, TCP/IP, and IrDA, to only name a few.

In this context, HdS has become a crucial factor in embedded system design since it allows to accommodate and adapt late changes in the hardware platform as well as in the application software. Thus, even last minute changes can be quickly performed. On the other hand, changes in the HdS are often hard to track and can have a complex impact on the system with a potential for total system failure. HdS also critically influences the system performance and power management. Consequently, HdS must be carefully designed and maintained.

In contrast to its importance in the area of electronic systems design, the role of HdS is most often underestimated. Considering todays literature, we can only find very few introductory and application-oriented text books. To overcome this gap, we have brought together experts from different HdS areas in this book. By providing a comprehensive overview of general HdS principles, tools, and applications, we feel that this book provides adequate insight into the current technology and upcoming developments in the domain of HdS. The reader will find a text book with self-contained introductions to the principles of Real-Time Operating Systems (RTOS), the emerging BIOS successor
UEFI, and the Hardware Abstraction Layer (HAL). Further chapters cover industrial applications, verification, and tool environments.

This book would not have been possible without the help and contributions of many people. First of all, we would like to thank Mark de Jongh and Cindy Zitter from Springer Verlag who supported us throughout the publication process. We also thank the contributing authors for their great cooperation through the entire process. For the review of individual chapters and valuable comments and suggestions, we acknowledge the help of Stephen A. Edwards (Columbia University), Petru Eles (Linköpings Universitet), Andreas Gerstlauer (University of Texas, Austin), Grant Martin (Tensilica Inc.), and Graziano Pravadelli (Universita di Verona). Finally, we thank Christof Poth who provided us with the sparkling picture for our book cover.

Wolfgang Ecker
Infineon Technologies AG, Munich, Germany

Wolfgang Müller
Paderborn University, Paderborn, Germany

Rainer Dömer
University of California, Irvine, USA
Hardware-dependent Software
Principles and Practice
Ecker, W.; Müller, W.; Dömer, R. (Eds.)
2009, XII, 299 p., Hardcover
ISBN: 978-1-4020-9435-4