Preface

Since the start of hydrocarbon production in the Netherlands, measurement campaigns have been performed to measure the resulting subsidence, to which gas and oil companies in the Netherlands are legally obliged. The majority of the gas fields in the Netherlands, including the Groningen gas field, are operated by Nederlandse Aardolie Maatschappij B.V. (NAM). Different subsidence measurement techniques (leveling, GPS) have been utilized since the 1960s. Synchronously, geodetic estimation methodologies have been developed to estimate subsidence due to hydrocarbon production from the measurements, in which the Delft Institute of Earth Observation and Space Systems (DEOS) has been closely involved. Since the 1990s, satellite radar interferometry (InSAR) as a deformation monitoring technique has developed. However, the situation in the Groningen area is challenging (temporal decorrelation, rural areas, atmospheric disturbances, small deformation rates—several mm/year—over a large spatial extent). In 2003, the project ‘Fundamenteel Onderzoek Radar Interferometrie’ was approved (Regeling Technologische Samenwerking), which enabled a four year PhD research to investigate the feasibility of InSAR for monitoring subsidence due to hydrocarbon production, in cooperation between Delft University of Technology and NAM. This book describes the results of this scientific research, that is directly coupled to the practical demand for subsidence monitoring techniques. It covers the topic in a generic way: both precision and reliability of InSAR as a measurement technique and the estimation of earth surface deformation in the presence of multiple deformation causes are addressed.

Acknowledgements

This book is the result of a PhD research, that has been performed in cooperation between Delft University of Technology and NAM, between the radar remote sensing group of Prof. Hanssen (DEOS, DUT) and the onshore surveys team of Lammert Zeijlmaker (NAM). The project has been supported by SenterNovem, agency of the Dutch Ministry of Economic Affairs. All ERS and Envisat SAR data were kindly provided by the European Space Agency (ESA) for Category 1 project 2724, “InSAR deformation analysis of subsidence in the Groningen gas field, the Netherlands”. Many visualizations in this book have been created using Matlab®, which has been utilized for numerous computations.

I am very grateful to my promotors Prof. Hanssen and Prof. Teunissen, and Lammert Zeijlmaker of NAM for giving me the opportunity to perform this scientific research with such direct practical implementations. I have experienced a very pleasant and open working environment both at Delft University of Technology and at NAM. In particular, I would like to thank Prof. Hanssen for the support during the entire research period, the detailed review of this book and many valuable suggestions. I also greatly appreciate the feedback and critical comments I have received from Prof. Teunissen and the members of the examination committee: Prof. Klees,
Prof. Kroonenberg, Prof. Rocca, Dr. Duquesnoy, and Dr. Smit. Series editor Freek van der Meer and Petra Steenbergen from Springer are acknowledged for publishing this work in the *Remote Sensing and Digital Image Processing* series.

Furthermore, I would like to thank all (former) members of the radar remote sensing group at Delft University of Technology for the pleasant working environment: Joaquin Munoz Sabater, Freek van Leijen, Petar Marinkovic, Yue Huanyin, Swati Gehlot, Rossen Grebenicharsky, Zbigniew Perski, Ayman Elawar, Liu Guang, Miguel Caro Cuenca, Mahmut Arikan, Jia Youliang, Frank Kleijer, Gert Jan van Zwieten and Shizhuo Liu, and Bianca Cassee during her MSc graduation project. Special thanks go to Freek van Leijen and Petar Marinkovic, whose work has definitely speeded up the obtained results for subsidence monitoring in the Groningen region, for the open attitude during my entire PhD research period, and the inspiring discussions. I would also like to thank Bert Kampes for his quick response to many questions. Thanks go as well to Alireza Amiri-Simkooei for assistance with Variance Component Estimation, Roderik Lindenbergh for assistance with geostatistics, Ria Scholtes for the administrative support, and to all other members of the Mathematical Geodesy and Positioning (MGP) department of Delft University of Technology for the nice working environment. I would like to thank Hans Garlich and Joop Gravesteijn for the assistance with leveling the corner reflectors. Furthermore, I would like to thank Adriaan Houtenbos for the useful hints he has given me. Going back to the initial contact at the start of my PhD research, I would like to thank Frank Kenselaar for reacting enthusiastically when contacting him after spending four and a half years working in the industry. At NAM, I have received a lot of useful feedback from the subsidence monitoring team of Lammert Zeijlmaker and the geomechanics team of Dirk Doornhof. I have appreciated the cooperation with Simon Schoustra, Wilfred Veldwisch and Stefan Kampshoff, and would like to thank Onno van der Wal for all subsidence prognoses. Finally, I would like to thank my parents Gert and Marijke, brother Joris, and Arnoud, for their patience and support.

Audience

The research described in this book investigates the applicability of satellite radar interferometry (InSAR) for deformation monitoring, in particular subsidence due to hydrocarbon extraction. It covers the subject in a generic way, from the precision and reliability of InSAR as a measurement technique to the estimation of the deformation signal of interest in the potential presence of multiple deformation causes. It provides an overview of the Persistent Scatterer InSAR (PSI) theory, and subsequently focuses on the accuracy of the parameter estimates. For the reliability assessment of InSAR deformation estimates, which is essential for operational use, the multi-track datum connection procedure is introduced. The presented methodologies are demonstrated in an integrated way for the entire northern part of the Netherlands and a part of Germany (covering $\sim 15,000$ km2) using time series of ERS and Envisat acquisitions. The capabilities of PSI for wide-scale monitoring of
subsidence rates of several millimeters per year in rural areas are shown. Furthermore, it is demonstrated that the temporal observation density of PSI improves the insight in hydrocarbon reservoir behavior. The reader is assumed to have a background in geosciences and to be familiar with basic radar interferometry concepts. The book is designed for both researchers and the industry, since it translates the research results into the consequences for the operational use of InSAR for subsidence monitoring.

Readers who are interested in a geological background of the Groningen gas reservoir and the prediction of subsidence at ground level are referred to Chap. 2. For the theoretical background of PSI and its precision and reliability, the reader is recommended to focus on the Chaps. 3, 4, and 5. If one has a background in PSI and is looking for the specific application for subsidence monitoring due to gas extraction in the Netherlands, the reader is referred to Chap. 6, preceded by Chap. 5, which addresses the reliability assessment methodology for PSI deformation estimates. Readers who are most interested in the operational use of PSI for monitoring subsidence due to hydrocarbon production are referred to Chap. 7. To conclude, Chap. 8 addresses the potential of PSI for improving knowledge on reservoir behavior.
Satellite Radar Interferometry
Subsidence Monitoring Techniques
Ketelaar, V.B.H.G.
2009, XVI, 244 p. 139 illus., 46 illus. in color., Hardcover