TABLE OF CONTENTS

Preface xi

1. Mesophase Behaviour at the Borderline between Calamitic and “Banana-shaped” Mesogens 1
 Gerhard Pelzl and Wolfgang Weissflog
 1. Introduction 1
 2. Variants of Polymorphism with SmCP\textsubscript{A}, Conventional Smectic (SmA, SmC) and Nematic Phases 5
 2.1. Dimorphism SmA-SmCP\textsubscript{A} in Bent-core Mesogens with Perfluorinated Terminal Chains 5
 2.2. Polymorphism SmA-SmCP\textsubscript{A}, SmA-SmC-SmCP\textsubscript{A} and N-SmA-SmC-SmCP\textsubscript{A} in Cyano-substituted Bent-core Compounds 6
 2.3. Five-ring 4,6-dichlororesorcinol Derivatives with Fluorine or Chlorine Substituents at the Outer Rings 8
 2.4. Polymorphism of the Non-polar SmC and/or the Nematic Phase with Several SmCP Phases 12
 2.5. Liquid Crystal Tetramorphism with a SmA Phase and a Reentrant SmC\textsubscript{P}\textsubscript{A} Phase 14
 2.6. Benzoyl Derivatives of Secondary Cyclic Amines 15
 3. Polymorphism with Polar Biaxial SmA Phases 15
 3.1. SmAP\textsubscript{A} Phases Formed by Terminal Non-polar Bent-core Mesogens 15
 3.2. SmAP\textsubscript{A} Phases with a Partial Bilayer Structure (SmA\textsubscript{P}\textsubscript{A}) Formed by Terminal Polar Bent-core Mesogens 18
 4. Direct Transitions from the Nematic to Polar Smectic or Columnar Phases 20
 4.1. Direct Transition from the Nematic Phase into the SmCP\textsubscript{A} Phase 20
 4.2. Direct Transition from the Nematic Phase into the SmA\textsubscript{P}\textsubscript{A} Phase 24
 4.3. Variants of Polymorphism with Columnar and Nematic Phases or Conventional Smectic Phases 24
5. Bent-core and Calamitic Mesogens – Mixed with each other or Covalently Linked to each other 30
 5.1. Transitions between “Banana Phases” and Nematic and/or Conventional Smectic Phases in Binary Mixtures 30
 5.2. Further Binary Systems with Bent-core Mixing Components 35
 5.3. Dimers Consisting of a Bent-core and a Calamitic Mesogenic Unit 37
6. Unusual Properties of Conventional Nematic and Smectic Phases Formed by Bent-core Mesogens 38
 6.1. Nematic Phases of Bent-core Compounds 38
 6.2. Non-polar SmA and SmC Phases Formed by Bent-core Compounds 42
7. Field-induced Transitions from a Non-polar Phase to a Polar Phase 43
 7.1. Field-induced Enhancement of the Transition Temperature SmCP_A–isotropic 43
 7.2. Field-induced Enhancement of the Transition Temperature SmCP_A – SmA 46
 7.3. Field-induced Enhancement of the Transition Temperature Crystalline-isotropic 46
8. Discussion 48
9. Acknowledgement 54
10. References 54

2. Physical Properties of Banana Liquid Crystals 59
 Antal Jákli, Chris Bailey, and John Harden
1. Introduction 59
 1.1. Structural Cartoons 59
2. Experimental Results 64
 2.1. Phase Structures 64
 2.2. SmCP Materials 66
 2.3. The B7 Materials 74
 2.4. Free-Standing Filaments 76
3. Acknowledgements 78
4. References 79

3. Atomistic-Resolution Structural Studies of Liquid Crystalline Materials Using Solid-State NMR Techniques 85
 Akira Naito and Ayyalusamy Ramamoorthy
1. Introduction 85
2. SLF 91
3. State-Correlated 2D NMR Spectroscopy 96
Table of Contents

4. **SC-2D NMR Spectra of Liquid Crystalline Samples** 97
 4.1. Theoretical Background of SC-2D NMR and Analysis of Order Parameters in 4'-methoxybenzyldiene-4-acetoxyaniline 97
 4.2. SC-2D NMR Spectra of EBBA 105
 4.3. SC-2D NMR Spectra of Mixed System of 5OCB and PCH3 108
5. **Summary and Scope** 113
6. **References** 114

4. **Separated Local Field NMR Spectroscopy in Columnar Liquid Crystals** 117
 Sergey V. Dvinskikh
 1. **Introduction** 117
 2. **13C-1H Separated Local Field NMR Spectroscopy** 119
 2.1. Heteronuclear Spin-spin Interactions 119
 2.2. The Effect of Magic-angle Sample Spinning 120
 2.3. Measurements of 1H-13C Dipolar Couplings 121
 3. **Summary** 136
 4. **Acknowledgements** 136
 5. **References** 136

5. **Phase Biaxiality in Nematic Liquid Crystals** 141
 Kirsten Severing and Kay Saalwächter
 1. **Introduction** 141
 2. A Long-discussed Candidate 142
 3. Phase Biaxiality in Nematic Liquid-crystalline Polymers 147
 3.1. Conoscopic Investigations 147
 3.2. Deuterium NMR Investigations 150
 3.3. Effects of Phase Biaxiality on Cholesteric Phase Structure 155
 4. Phase Biaxiality in Combined Disc-rod Mesogens 157
 5. Biaxial Nematic Phases in Liquid Crystals Consisting of Banana Mesogens 160
 5.1. Deuterium NMR Investigations 161
 5.2. X-Ray Diffraction Measurements 163
 6. Organo-Siloxane Tetrapodes 166
 7. **Summary** 168
 8. **References** 169

6. **NMR Study of Self-diffusion** 171
 Anatoly Khitrin
 1. **Introduction** 171
 2. Collective Coherent Response Signals 172
Table of Contents

3. Gradient-Echo with Soft Excitation Pulse 174
4. References 178

7. Structure and Dynamics of Thermotropic Liquid Crystalline Polymers by NMR Spectroscopy 179
Isao Ando and Takeshi Yamanobe
1. Introduction 179
2. Structure and Dynamics of Crystalline and Liquid Crystalline Polyesters with Flexible Side Chains 180
 2.1. Rigid-rod Polyesters with 1, 4-dialkyl Esters of Pyromellitic Acid and 4, 4’-biphenol 180
 2.2. Structure and Dynamics of Rod like Poly(p-biphenylene terephthalate) with Long n-alkyl Side Chains 185
 2.3. Poly(diethylsiloxane) 190
 2.4. Poly(L-glutamate)s with Long n-alkyl Side Chains 199
 2.5. Poly(L-glutamate) with Unsaturated Olely Side Chains 216
3. Diffusion of Rod like Polymers in the Thermotropic Liquid Crystalline Phase by Field-gradient NMR 219
 3.1. Rod like Polypeptides 219
 3.2. Diffusion of Poly(n-alkyl L-glutamate)s in the Thermotropic Liquid Crystalline Phase 221
 3.3. Diffusion of Poly(diethylsiloxane) in the Thermotropic Liquid Crystalline Phase and Isotropic Phase 224
 3.4. Diffusion of PDES in the Isotropic Phase and in the Isotropic Region of the Biphasic Phase 225
4. References 230

8. Recent Experimental Developments at the Nematic to Smectic-A Liquid Crystal Phase Transition 235
Anand Yethiraj
1. Introduction 235
2. Background: The Hierarchy of Theoretical Approximations 235
 2.1. Essential Features of the NA Transition 235
 2.2. Mean-field Theory and Landau–de Gennes Theory 237
 2.3. Thermal Fluctuations 238
3. Experiments Probing Mean Field Parameters 239
 3.1. Dissolved Solutes 239
 3.2. Carbon-13 and Deuterium NMR Studies 240
4. Experiments Probing Critical Behaviour 241
5. Experiments Probing Phase Transition Order 243
 5.1. The Landau Tricritical Point and the HLM Effect 243
 5.2. External Fields 245
| 6. The Landau-Peierls Instability in Smectics | 245 |
| 7. Summary | 246 |
| 8. Acknowledgements | 246 |
| 9. References | 246 |

9. Liquid Crystalline Conjugated Polymers - Synthesis and Properties 249
 Kazuo Akagi
 1. Introduction 249
 1.1. LC Polyacetylene Derivatives 252
 2. Preparation 252
 2.1. Syntheses of Monomers 252
 2.2. Polymerizations of Monomers 254
 3. Properties 255
 3.1. Liquid Crystalline Phases of Monomers 255
 3.2. Liquid Crystalline Phases of Polymers 255
 3.3. Higher Order Structure and Stereospecific Configuration 258
 3.4. Absorption Spectra and Chemical Doping 261
 3.5. Molecular Orientation and Electrical Conductivity 263
 3.6. Spin State and Chemical Doping 267
 3.7. Orientation Behavior and Anisotropy Under Magnetic Field 268
 4. Conclusion 272
 5. Acknowledgements 273
 6. References 273

10. Fast Switching of Nematic Liquid Crystals by an Electric Field: Effects of Dielectric Relaxation on the Director and Thermal Dynamics 277
 Ye Yin, Sergij V. Shiyanovskii and Oleg D. Lavrentovich
 1. Introduction 277
 2. Dielectric Response in Nematic Liquid Crystals 279
 3. Switching Memory Effect 283
 3.1. Theory 283
 3.2. Experiment and Analysis 285
 4. Dielectric Heating Effect 289
 5. Summary 293
 6. Reference 294

11. Photoconducting Discotic Liquid Crystals 297
 Quan Li and Lanfang Li
 1. Introduction 297
 2. Photoconductivity 298
 3. Mechanism of Charge Transportation in Organic Materials 298
Table of Contents

4. Unique Structures of Discotic Liquid Crystals 300
5. Characterization Method 303
6. Processing of the Photoconducting Discotic Liquid Crystals 305
7. Photoconducting Discotic Liquid Crystals 311
8. Application 316
9. Outlook 319
10. Reference 320

Index 323
PREFACE

Liquid crystalline materials are omnipresent in daily life. A broad spectrum of powerful applications of these exotic materials has created new avenues in academic and industrial research. Some of the common applications include display devices, temperature and pressure sensors, light valves and biosensors. Yet, there is considerable current interest in the design and development of novel liquid crystalline compounds with various functional properties. In addition, there is a significant interest in the characterization of these compounds at atomistic-level resolution using a variety of modern experimental, theoretical and computational approaches, which would aid the easy creation of high quality functional molecules. The mesogenic properties of liquid crystalline molecules are fascinating to spectroscopists and have been well utilized in the development of a variety of physical techniques including Nuclear Magnetic Resonance spectroscopy. Needless to mention that the increasing number of research teams, reports and meetings related to this interdisciplinary field is an indication of the wealth and remaining challenges of this rapidly growing field.

This book does not intend to cover the whole field of thermotropic liquid crystalline (TLC) materials as it is extremely difficult to cover within a single book. Instead it presents a collection of Chapters written by experts on various exciting topics in the field. Properties of recently developed TLCs (such as banana-type, thiophene-based, and columnar TLCs), phase biaxiality, and novel polymeric TLCs are discussed in detail. Solid-state NMR studies to obtain atomistic-level structural and geometrical information of TLCs are presented. Synthesis of liquid crystalline conjugated polymers, fast switching of nematic materials by an electric field, and photoconducting discotic systems are also presented.

It is my considerable pleasure to offer my thanks to all the authors for their wonderful contributions and the publishers for the help in developing the book. I thank my family for their help in bringing out this book. I also would like to thank my colleague and friend, Dr. Narasimhaswamy (Central Leather Research Institute, Chennai, India), who introduced me to this exciting field of research that has lead to the development of this book.

I sincerely hope researchers in both academia and industries will find the book to be useful for their research.

Ann Arbor, Michigan, USA
October 17, 2006

Ayyalusamy Ramamoorthy
The University of Michigan