# Table of Contents

**VOLUME 1**

1. **Basic Concepts – Scattering and Time Correlation Functions** .................................................. 1
   
   1. Introduction ........................................................................................................... 3
   
   2. Basic Scattering Theory – Interference ................................................................. 3
   
   3. **Fundamentals of Time Correlation Functions** ..................................................... 7
      
      3.1 Stochastic (Random) Functions or “Signals” ...................................................... 8
      
      3.2 Time Averages .................................................................................................... 8
      
      3.3 Some Properties of Time Autocorrelation Functions ....................................... 10
      
      3.4 Ensemble-Averaged Time Correlation Functions .............................................. 12
      
      3.5 Spectral Densities of Time Correlation Functions ............................................. 14
   
   4. **Correlation Functions for Number Densities in Fluids** ................................. 15
      
      4.1 Spatial Fourier Transforms .................................................................................. 15
      
      4.2 Local Density and Its Fourier Transform .......................................................... 16
      
      4.3 Space Time Correlation Function of the Local Density .................................... 16
      
      4.4 The Van Hove Space Time Correlation Function .............................................. 17
      
      4.5 The Self Correlation Function ............................................................................ 18
      
      4.6 Physical Interpretation, Limiting Values and the Radial Distribution Function ........................................................................................................... 18
      
      4.7 The Structure Factor ............................................................................................ 19
      
      4.8 Dynamic Scattering Experiments ......................................................................... 20
      
      4.9 Space Time Correlation Functions for Perfect Gases ........................................ 20
   
   5. **The Translational Self-Diffusion Model** ............................................................. 23
      
      5.1 Derivation of the Diffusion Equation .................................................................... 23
      
      5.2 Random Walk ...................................................................................................... 25
      
      5.3 Solution of the Diffusion Equation for $G_s(\vec{r}, t)$ ............................................. 26
      
      5.4 Solution of Partial Differential Equations ......................................................... 26
5.5 Expression for the Diffusion Coefficient .................................. 28
5.6 The Langevin Equation ......................................................... 29
5.7 The Stokes-Einstein Relation ................................................. 30

6 More Refined Models for Motions in Liquid ............................... 31
6.1 Translational Motion of Small Molecules in Liquids – The Gaussian Approximation .............................................. 31
6.2 Molecular Dynamics Simulations ............................................. 32
6.3 Molecular Dynamics Test of the Gaussian Approximation ..... 33
6.4 Molecular Dynamics Tests of the Stokes – Einstein Relation for Hard Sphere Fluids .................................................. 33
6.5 Long-Time Tails in the Velocity Autocorrelation Function ...... 34
6.6 Diffusion in Quasi-Two Dimensional Systems ...................... 34

7 Macromolecular and Colloidal Dispersions ............................... 35
7.1 The Hydrodynamic Radius ..................................................... 35
7.2 Relations between D and Molecular Dimensions for Nonspherical Particles .................................................. 36
7.3 Non-Dilute Dispersions ......................................................... 37

8 Conclusion .............................................................................. 38

2 Total Intensity Light Scattering from Solutions of Macromolecules ........................................ 41
G. C. Berry

1 Introduction ................................................................. 43

2 General Relations ............................................................ 46

3 Scattering at Infinite Dilution and Zero Scattering Angle ........ 49
3.1 The Basic Relation .......................................................... 49
3.2 Identical Scattering Elements .............................................. 50
3.3 Optically Diverse Scattering Elements .............................. 51
3.4 Optically Anisotropic Scattering Elements ....................... 53
3.5 Scattering Beyond the RGD Regime .................................. 55

4 Scattering at Infinite Dilution and Small q .............................. 57
4.1 The Basic Relation .......................................................... 57
4.2 Identical Scattering Elements .............................................. 57
4.3 Optically Diverse Scattering Elements .............................. 62
4.4 Optically Anisotropic Scattering Elements ....................... 64
4.5 Scattering Beyond the RGD Regime .................................. 66
5 Scattering at Infinite Dilution and Arbitrary $q$ .......................... 68
  5.1 The Basic Relation ............................................. 68
  5.2 Identical Scattering Elements .................................... 68
  5.3 Optically Diverse Scattering Elements ............................ 79
  5.4 Optically Anisotropic Scattering Elements ....................... 81
  5.5 Scattering Beyond the RGD Regime .............................. 82
6 Scattering from a Dilute Solution at Zero Scattering Angle ........ 85
  6.1 The Basic Relation ............................................. 85
  6.2 Monodisperse Solute, Identical Optically Isotropic 
      Scattering Elements ............................................ 87
  6.3 Heterodisperse Solute, Identical Optically Isotropic 
      Scattering Elements ............................................ 89
  6.4 Optically Diverse, Isotropic Scattering Elements .............. 92
  6.5 Optically Anisotropic Scattering Elements ..................... 94
7 Scattering from Non Dilute Solution at Zero Scattering Angle .... 94
  7.1 The Basic Relation ............................................. 94
  7.2 Low Concentrations: the Third Virial Coefficient ............. 95
  7.3 Concentrated Solutions ....................................... 96
  7.4 Moderately Concentrated Solutions ............................ 100
8 Scattering Dependence on $q$ for Arbitrary Concentration .......... 104
  8.1 The Basic Relation ............................................. 104
  8.2 Dilute to Low Concentrations .................................. 105
  8.3 Concentrated Solutions ....................................... 106
  8.4 Moderately Concentrated Solutions ............................ 107
  8.5 Behavior for a Charged Solute ................................ 112
9 Special Topics .................................................................. 114
  9.1 Intermolecular Association in Polymer Solutions ............. 114
  9.2 Intermolecular Association in Micelle Solutions ............. 118
  9.3 Online Monitoring of Polymerization Systems ................. 119

3 Disordered Phase and Self-Organization of 
Block Copolymer Systems .............................................. 133
   C. Giacomelli & R. Borsali

1 Introduction ............................................................. 135

2 Disordered Phase ........................................................ 136
   2.1 RPA: Historical Sketch and Theoretical Developments ........ 136
   2.2 Experimental Evidence ........................................ 141
2.3 Results and Discussion ............................................. 143
2.4 Elastic Scattering ..................................................... 147
2.5 Dynamic Structure Factors ....................................... 154
2.6 Extension to the Diblock Copolymer in the Melt Case ....... 159

3 Self-organization of Block Copolymers ............................ 160
3.1 Self-Assembly in Bulk ............................................... 162
3.2 Self-Assembly in Solution ......................................... 168

4 Conclusion ............................................................... 183

4 Small-Angle Scattering from Surfactants and Block Copolymer Micelles .................................................... 191
J. S. Pedersen

1 Introduction ............................................................ 192
2 Thermodynamics and Packing Parameters ....................... 194

3 Scattering from Surfactant Micelles ................................. 196
3.1 Basic Expressions and Homogeneous Models ..................... 196
3.2 Globular Core-Shell Micellar Models ............................ 203
3.3 Cylindrical Elongated and Disk-Like Core-Shell Micelles ...... 207
3.4 Long Cylindrical and Worm-Like Micelles ....................... 208

4 Block Copolymer Micelles ............................................ 217
4.1 Models with Non-Interacting Gaussian Chains ................... 218
4.2 Models with Interacting Excluded-Volume Chains ............... 219
4.3 Calculation of Radial Profiles ..................................... 225

5 Summary and Outlook .................................................. 227

5 Brush-Like Polymers .................................................... 235
Y. Nakamura & T. Norisuye

1 Introduction ............................................................ 236
2 Theoretical Models for Brush-Like Polymers ....................... 238
2.1 Rigid Cylinders ....................................................... 239
2.2 WormLike Cylinders ............................................... 242
2.3 Gaussian Brushes .................................................... 252
2.4 Semi-Flexible Brushes .............................................. 256
3 Comparison Between Theory and Experiment .................. 260
  3.1 Polymacromonomers ......................................... 260
  3.2 Combs and Centipedes .................................... 279

6 Polyelectrolytes-Theory and Simulations .................. 287
  C. Holm

1 Introduction ...................................................... 288

2 The Cell Model .................................................... 289

3 Solutions of the Cell Model .................................... 292
  3.1 Specification of the Cell Model ................................. 292
  3.2 Poisson–Boltzmann Theory .................................. 294
  3.3 Solution of the Poisson–Boltzmann Equation for the
      Cylindrical Case ........................................... 295
  3.4 Manning Condensation ....................................... 297
  3.5 Limiting Laws of the Cylindrical PB-Solution ............... 297

4 Additional Salt: The Donnan Equilibrium .................... 299

5 Beyond PB .......................................................... 302
  5.1 Simulations of Osmotic Coefficients and Counterion
      Induced Attractions ....................................... 304
  5.2 Simulations of Rods of Finite Length ......................... 307

6 Simulations of Polyelectrolyte Solutions in Good Solvent ...... 312

7 Polyelectrolytes in Poor Solvent ............................. 314
  7.1 Introduction .................................................. 314
  7.2 Pearl-Necklace Conformation ................................ 315
  7.3 Simulations ................................................... 317

8 Polyelectrolyte Networks ....................................... 325
  8.1 Conformation in Poor Solvent ................................ 328

9 Summary ........................................................... 329

7 Dynamic Light Scattering ....................................... 335
  B. Chu

1 Introduction ...................................................... 336
  1.1 Static Light Scattering ...................................... 336
1.2 Dynamic Light Scattering and Laser Light Scattering .......... 336
1.3 Laser Light Scattering and X-Ray/Neutron Scattering .......... 337

2 Single-Scattering Photon Correlation Spectroscopy ............... 339
  2.1 Energy Transfer versus Momentum Transfer .................. 339
  2.2 Siegert Relation and Time Correlation Functions ............. 340
  2.3 Diffusions and Internal Motions .............................. 342
  2.4 Practice of (Single-Scattering) Photon Correlation Experiments .................................................. 344

3 Photon Cross-Correlation Techniques ............................. 348
  3.1 Single Scattering versus Multiple Scattering ................ 348
  3.2 Photon Cross-Correlation Spectroscopy ......................... 350

4 Practice of Photon Correlation and Cross-Correlation ............. 355
  4.1 General Considerations [10] .................................. 355
  4.2 Use of Optical Fibers ......................................... 356

5 Recent Developments ............................................. 361
  5.1 Echo Dynamic Light Scattering ................................. 361
  5.2 Phase Analysis Light Scattering (PALS) ......................... 364

6 Final Remarks ...................................................... 369

8 Light Scattering from Multicomponent Polymer Systems in Shear Fields: Real-time, In Situ Studies of Dissipative Structures in Open Nonequilibrium Systems ............... 377
  T. Hashimoto

  1 Introduction ..................................................... 378
    1.1 General Background ........................................ 378
    1.2 Principles of Rheo-Optics .................................. 379

  2 Shear Rheo-Optics .............................................. 380
    2.1 Background of Shear Rheo-Optics ........................... 380
    2.2 Shear-Induced Phase Transition: Two Opposing Phenomena, Mixing and Demixing ................................. 383

  3 Dynamical Asymmetry and Stress–Diffusion Coupling in Multicomponent Systems ........................................ 385
    3.1 Dynamical Asymmetry Versus Dynamical Symmetry .......... 385
    3.2 Some Anticipated Effects of Dynamical Asymmetry on Self-Assembly in the Quiescent State .......................... 387
3.3 Basic Time-Evolution Equation and a Theoretical Analysis of the Early Stage Self-Assembly in Dynamically Asymmetric Systems .......................................................... 393
3.4 General Background on the Effects of Shear Flow on Self-Assembly of Both Dynamically Symmetric and Asymmetric Systems .......................................................... 397

4 Methodology .............................................................................................................. 399
4.1 Simultaneous Measurements of Stress, Optical Microscopy, Light Scattering, Transmittance, Birefringence, etc .................. 399
4.2 Examples: Simultaneous Measurements of Stress, Shear-SALS, and Shear-Microscopy ............................................ 407

5 Shear-Induced Mixing .................................................................................................. 415
5.1 Shear-Rate Dependence of Steady-State Structures .......... 416
5.2 Uniformity of Droplet Size in Regime II ......................... 419
5.3 String Structure in Regime IV ......................................................... 421
5.4 Shear-Induced Phase Transition .................................................. 424
5.5 Small Molecules Versus Polymers ............................................ 429
5.6 Tracing Back the Growth History of Phase-Separated Structures .......................................................... 432
5.7 Further Remarks ......................................................................................... 434

6 Shear-Induced Demixing (Phase Separation) .......................................................... 434
6.1 Observation of Shear-Induced Dissipative Structures ........ 435
6.2 Origin of Shear-Induced Formation of Dissipative Structures .......................................................... 437
6.3 Shear-Rate Dependence ................................................................. 439
6.4 Time-Evolution of Transient Dissipative Structures .......... 446
6.5 Further Remarks ..................................................................................... 450
6.6 Shear-Induced Dissipative Structures Formed for Semidilute Crystallizable Polymer Solutions .......................................................... 455

9 Light Scattering from Polysaccharides as Soft Materials ................................................. 463
W. Burchard
1 Introduction ................................................................................................................. 465
1.1 Polysaccharides are Archetypes for Soft Materials ............... 465
2 Some General Considerations .................................................. 468
  2.1 Can Static Light Scattering Shed some Light onto the Reasons for Softness? ................................................. 469
  2.2 New Insight by Dynamic Light Scattering in Combination with Static Light Scattering ................................. 472
3 Flexibility and Rigidity ............................................................. 476
  3.1 Pullulan ........................................................................... 476
  3.2 Homoglucans of the α(1-4) and β(1-4) Type .................. 480
4 Single- and Multiple Helices. Exocellular Polysaccharides ........ 503
  4.1 Xanthan ......................................................................... 504
  4.2 Gellan and Polysaccharides from the Rhizobia Family .... 509
  4.3 Schizoplylan .................................................................. 515
  4.4 ρ-Parameter and Second Virial Coefficient ...................... 517
  4.5 Effects of Coulomb Charges and of Flexible Side Chains .... 518
5 Gelation Versus Crystallization .................................................. 520
  5.1 Alginates: Evidence for Bundle Formation ...................... 524
  5.2 The Carrageenans: Evidence for Double Helix Formation ........................................................................ 528
  5.3 Summary of the Dispute on Double or Single Helices as Unimers ............................................................. 535
6 Thickeners – What Inhibits Gel Formation? ................................. 536
  6.1 Galactomannans and Xyloglucans .................................... 537
  6.2 Properties of Nonheated Tamarind Polysaccharides ........ 541
  6.3 Properties of Enzymatically Oxidized Tamarind Polysaccharides ............................................................... 543
7 Branched Polysaccharides ......................................................... 546
  7.1 Random and Hyperbranched Types of Long Chain Branching ........................................................................ 546
  7.2 Experimental Verification .................................................... 552
8 Chain Dynamics ........................................................................ 564
  8.1 Effects of Segmental Concentration in the Particle ............ 565
  8.2 Angular Dependence of the First Cumulant ..................... 568
  8.3 Cluster Growth and Changes in Correlation Lengths in the Sol–Gel Transition ............................................. 574
9 Basic Relationships and Models .................................................. 581
  9.1 Objectives of this Section ..................................................... 581
10 Fluorescence Photobleaching Recovery .......... 605
P. S. Russo, J. Qiu, N. Edwin, Y. W. Choi, G. J. Doucet, & D. Sohn

1 Introduction .................................. 607
2 When to Choose FPR ........................... 608
3 Labeling the Macromolecule ....................... 609
   3.1 General Considerations ......................... 609
   3.2 How much Dye to Attach ....................... 611
   3.3 Cleanup .................................. 611
   3.4 Validating the Labeled Macromolecule .......... 613
   3.5 Recipes .................................. 614
4 Different Types of FPR Instruments ................ 615
   4.1 General Considerations ......................... 615
   4.2 Single-Beam FPR Devices ....................... 618
   4.3 Two-Beam Instruments ......................... 624
5 Applications .................................. 627
   5.1 Dilute Macromolecular Solutions ............... 627
   5.2 Concentrated Solutions and Suspensions ........ 627
   5.3 Probe Diffusion ................................ 628
   5.4 Liquid Crystals ................................ 628
   5.5 Gels ....................................... 629
   5.6 Polyelectrolytes ................................ 630
   5.7 Thin Films and Surfaces ....................... 630
   5.8 Other Applications ............................ 631
6 Expected Future Trends .......................... 632

11 Fluorescence Correlation Spectroscopy ............ 637
E. Haustein & P. Schwille

1 Introduction .................................. 638
2 Experimental Realization .......................... 640
   2.1 One-Photon Excitation ......................... 640
VOLUME 2

13 Small-Angle Neutron Scattering and Applications in Soft Condensed Matter ........................................ 723
I. Grillo

1 Introduction ........................................... 725

2 Description of SANS Instruments ..................... 725
  2.1 The Steady-State Instrument D22 ................... 726
  2.2 The Time-of-Flight Instrument LOQ .................. 727
  2.3 Detectors for SANS Instruments ..................... 729
  2.4 Sample Environments ................................. 731

3 Course of a SANS Experiment ......................... 731
  3.1 Definition of the q-Vector ........................... 731
  3.2 Choice of Configurations and Systematic Required Measurements ...................................................... 732
  3.3 Conclusion ........................................... 735

4 From Raw Data to Absolute Scaling .................... 736
  4.1 Determination of the Incident Flux $\Phi_0$ ............. 737
  4.2 Normalization with a Standard Sample ................. 737
  4.3 Solid Angle $\Delta\Omega(Q)$ ........................... 739
  4.4 Transmission ......................................... 740
  4.5 Multiple Scattering ................................... 743
  4.6 Subtraction of Incoherent Background ................. 745
  4.7 Conclusion ........................................... 746

5 Modeling of the Scattered Intensity ..................... 746
  5.1 Rules of Thumb in Small-Angle Scattering .......... 746
  5.2 SLD, Contrast Variation, and Isotopic Labeling ........ 749
  5.3 Analytical Expressions of Particle Form Factors .... 753
  5.4 Indirect Fourier Transform Method .................... 759
  5.5 Structure Factors of Colloids ......................... 761

6 Instrument Resolution and Polydispersity .............. 763
  6.1 Effect of the Beam Divergence and Size: $\theta$ Resolution ...... 765
  6.2 Effect of the $\lambda$ Distribution ...................... 765
  6.3 Smearing Examples ................................... 767
  6.4 Polydispersity ....................................... 769
  6.5 Instrumental Resolution and Polydispersity .......... 770
14 Small Angle Neutron Scattering on Gels 783
M. Shibayama

1 Introduction ................................................................. 784

2 Theoretical Background .................................................. 787
  2.1 Scattering Functions for Polymer Solutions in
      Semi-Dilute Regime .............................................. 787
  2.2 Scattering Functions for Polymer Gels ........................ 789
  2.3 Phenomenological Scattering Theories of Polymer Gels .... 790
  2.4 Inhomogeneities in Gels ........................................ 791
  2.5 Statistical Theory of Polymer Gels ............................ 793

3 Experimental Observation of Scattering Function for Various
   Conditions ........................................................................ 795
  3.1 Effects of Cross-Links .............................................. 795
  3.2 Swollen and Deswollen Gels ..................................... 801
  3.3 Scattering Function for Stretched Gels ......................... 804
  3.4 Critical Phenomena and Volume Phase Transition .......... 809
  3.5 Charged Gels and Microphase Separation ...................... 815
  3.6 Physical Gels ..................................................... 823
  3.7 Oil Gelators ........................................................ 826
  3.8 Other Gels and New Techniques ................................ 827

4 Concluding Remarks ....................................................... 827

15 Complex Melts under Extreme Conditions: From
   Liquid Crystal to Polymers ............................................. 833
L. Noirez

1 Introduction ................................................................. 834
## Table of contents

### 2 Complex Melts under Flow

2.1 The Mesomorphic State .................................................. 837
2.2 First Rheo-SANS Experiments on SCLC-Polymer Melts:  
Non-Equilibrium Phase Diagram from Low to High Temperatures .................................................. 839
2.3 Flow Effects in the Liquid State (Isotropic Phase) of  
SCLC-Polymers: A New Approach to the Molten State ...... 851

### 3 Pressure Effects on Liquid Crystal Melts

3.1 The Importance of the Scattering Method for Structural  
Investigations ................................................................. 864
3.2 Definition of the Relevant Parameters ............................... 865
3.3 Influence of the Pressure on the Layer Distance ................. 867
3.4 Influence of the Pressure on the Smectic Order  
Parameter ................................................................. 867
3.5 Influence of the Pressure on the Smectic Phase  
Correlation Lengths .................................................. 868
3.6 Conclusions and Perspectives on Pressure Effects ............. 870

### 16 In Situ Investigation of Adsorbed Amphiphilic Block  
Copolymers by Ellipsometry and Neutron Reflectometry

R. Toomey & M. Tirrell

1 Introduction ................................................................. 874

2 Ellipsometry ............................................................... 875

2.1 Analysis of Thin, Adsorbed films at the Brewster Angle ...... 876
2.2 Data Collection and Interpretation .................................. 878
2.3 Limits of Model Applicability ......................................... 879

3 Adsorption Results .......................................................... 880

3.1 Materials and Experimental .......................................... 880
3.2 Adsorption of PS-b-PVP Copolymers .............................. 881
3.3 Adsorption of NaPSS-b-PtBS Copolymers ......................... 885
3.4 Summary ................................................................. 890

4 Neutron Reflection .......................................................... 890

4.1 Experimental .............................................................. 892
4.2 Results ................................................................. 892

5 Conclusions ................................................................. 896
### 17 Synchrotron Small-Angle X-Ray Scattering  ................. 899

*T. Narayanan*

1. **Introduction** .................................................. 900

2. **General Principle** ............................................. 901

   2.1 Momentum Transfer and Differential Scattering
   Cross Section ................................................... 901

   2.2 Form Factor and Polydispersity .............................. 904

   2.3 Limiting Form of $I(q)$ ..................................... 906

   2.4 Structure Factor ............................................ 909

3. **Experimental Setup** ........................................... 914

   3.1 Source .................................................... 916

   3.2 Impacts of Third Generation Sources ....................... 917

   3.3 Optics ...................................................... 919

   3.4 Detectors .................................................. 921

   3.5 Sample Environments ....................................... 924

4. **Data Reduction** .................................................. 928

   4.1 Intensity Normalization ................................... 929

   4.2 Angular and Intensity Calibrations .......................... 930

   4.3 Instrumental Smearing Effects .............................. 931

   4.4 Influence of Radiation Damage ............................ 932

5. **Complimentary SAXS Methods** ................................ 933

   5.1 Combined Small-Angle and Wide-Angle X-ray Scattering .. 933

   5.2 Ultra Small-Angle X-ray Scattering ......................... 937

   5.3 Anomalous Small-Angle X-ray Scattering ................... 942

   5.4 Time-Resolved Experiments ................................ 946

6. **Summary and Outlook** .......................................... 948

### 18 X-Ray Photon Correlation Spectroscopy (XPCS) ............ 953

*G. Grübel, A. Madsen & A. Robert*

1. **Introduction** .................................................. 954

2. **Coherent X-Rays from a Synchrotron Source** ................ 956

3. **Disorder under Coherent Illumination** ....................... 958

   3.1 Statistical Properties of Speckle Patterns ................ 961

   3.2 Reconstruction of Static Speckle Patterns ................ 963

4. **X-Ray Photon Correlation Spectroscopy (XPCS)** ............ 965
5 Experimental Set-Up .................................................. 967
6 XPCS in Soft Condensed Matter Systems ......................... 969
   6.1 Static and Dynamic Properties of Colloidal Suspensions ...... 970
   6.2 XPCS and SAXS Measurements in Colloidal Suspensions .... 971
   6.3 Slow Dynamics in Polymer Systems .............................. 976
7 Liquid Surface Dynamics Studied by XPCS ....................... 978
   7.1 Homodyne versus Heterodyne Detection .......................... 979
   7.2 Dynamics of Thin Polymer Films ................................. 980
   7.3 Dynamic Cross-Over Behavior of Liquid Mixtures .............. 982
   7.4 Critical Dynamic Behavior of a Liquid Crystal Surface ...... 984
8 Slow Dynamics in Hard Condensed Matter Systems ............... 985
9 Conclusions and Outlook ............................................ 990

19 Analysis of Polyelectrolytes by Small-Angle X-Ray Scattering .................................................. 997
   M. Ballauff
   1 Introduction ......................................................... 998
   2 Theory ............................................................... 1000
      2.1 Poisson-Boltzmann Cell Model ................................ 1000
      2.2 Beyond the Poisson-Boltzmann Cell Model .................... 1002
      2.3 Calculation of the Scattering Intensity \( I(q) \) Using the
          PB-Cell Model .................................................. 1003
      2.4 Anomalous Small Angle X-Ray Scattering .................... 1005
   3 Comparison of Theory and Experiment ........................ 1007
      3.1 Systems ............................................................ 1007
      3.2 Solution Properties: Electric Birefringence ................ 1008
      3.3 Osmotic Coefficient ............................................ 1009
      3.4 Scattering Experiments ........................................ 1011
   4 Conclusion ......................................................... 1017

20 Small-Angle Scattering of Block Copolymers ............... 1021
   I. Hamley & V. Castelletto
   1 Introduction ......................................................... 1023
# Table of Contents

## 2 Block Copolymer Melts .................................................. 1023

2.1 Theoretical Background ........................................... 1023

2.2 Structure Characterization ....................................... 1024

2.3 Phase Transitions: Mechanisms and Kinetics ................. 1030

## 3 Solutions of Block Copolymers Forming Spherical Micelles .... 1033

3.1 Theory ............................................................... 1033

3.2 Recent Experimental Examples .................................. 1039

## 4 Solutions of Block Copolymers Forming Cylindrical Micelles ... 1042

4.1 Theory ............................................................... 1042

4.2 Recent Experimental Examples .................................. 1044

## 5 Solutions of Block Copolymers Forming Lyotropic Liquid Crystal Phases .................................................. 1046

5.1 Introduction ......................................................... 1046

5.2 Lyotropic Phases Formed by Block Copolymers in Solution .................................................. 1048

5.3 Shear Flow Behavior of Block Copolymer Lyotropic Phases .................................................. 1055

## 6 Crystallization in Block Copolymers .................................. 1065

6.1 Morphology Probed by SAXS and WAXS ....................... 1065

6.2 Crystal/Chain Orientation Probed by SAXS and WAXS .... 1070

6.3 SAXS/WAXS Studies of Crystallization Kinetics ............. 1072

## Structural Studies of Proteins and Nucleic Acids in Solution Using Small Angle X-Ray Scattering (SAXS) ................................. 1083

R. Das & S. Doniach

1 Introduction ............................................................... 1084

2 What Does SAXS Measure? ........................................... 1085

3 The Size of a Biomolecule: Radius-of-Gyration Measurements ............................................................... 1087

4 Monomer, Dimer, or Multimer? ....................................... 1090

5 Probing Intermolecular Forces Between Biomolecules .......... 1092

6 Three-Dimensional Reconstruction of Molecule Shapes ........ 1095

7 Modeling States with Conformational Diversity ................. 1099
8 Anomalous Small-Angle X-Ray Scattering of Biomolecules .... 1101
9 Time-Resolved SAXS ............................................. 1102
10 Final Notes .................................................. 1106

22 Transmission Electron Microscopy Imaging of Block Copolymer Aggregates in Solutions ..................... 1109
N. Duxin & A. Eisenberg

1 Introduction .................................................. 1110
2 The Various Preparation Methods ............................. 1111
3 TEM Images of Various Morphologies of the Block Copolymer Aggregates ........................................... 1113
  3.1 Spherical Micelles ........................................... 1114
  3.2 Rods .......................................................... 1114
  3.3 Other Rod Like Morphologies ............................... 1114
  3.4 Bilayers ...................................................... 1116
  3.5 Hexagonally Packed Hollow Hoops ......................... 1118
  3.6 Large Compound Micelle .................................. 1120
4 Factors Controlling the Architecture of the Aggregates ... 1120
  4.1 Block Length ................................................. 1120
  4.2 Water Content ............................................... 1121
  4.3 Initial Polymer Concentration .............................. 1125
  4.4 Presence of Additives ...................................... 1126
  4.5 Nature and Composition of the Common Solvent ........ 1130
  4.6 Homopolymer ............................................... 1131
  4.7 Surfactants .................................................. 1133
  4.8 Polydispersity ............................................... 1133
  4.9 Temperature ................................................ 1134
  4.10 Glass Transition Temperature ............................. 1134
5 Conclusion .................................................... 1134

23 Single-Molecule Studies of DNA ............................. 1139
J. P. Rickgauer & D. E. Smith

1 Introduction .................................................. 1140
3 Application of Single Molecule Imaging to Biological Systems ........................................ 1209
3.1 Imaging Movement of Molecular Motors ........................................ 1209
3.2 Movement of Single Molecules in Biosystems ...................................... 1211
3.3 Association and Dissociation of Biomolecules ........................................ 1213
3.4 Kinetic Processes of Single Molecules .................................................. 1215
3.5 Dynamics of Enzymatic Activity and Memory Effects .................................. 1217
3.6 Dynamic Changes in Structural State of Biomolecules .............................. 1217

4 Manipulation for Single Molecule Measurements ................................. 1220
4.1 Immobilization of Biomolecules .......................................................... 1220
4.2 Manipulation Techniques for Single Molecule Detection ...................... 1222
4.3 Nanometry by Manipulation Techniques .............................................. 1225

5 Mechanical Measurements of Biomolecules ....................................... 1227
5.1 Mechanical Properties of Protein Polymers ........................................ 1227
5.2 Mechanically Induced Unfolding of Single Protein Molecules .................. 1229
5.3 Interaction of Biomolecules ................................................................. 1230
5.4 Manipulation and Molecular Motors – Processive Motors ...................... 1231
5.5 Nonprocessive Muscle Myosin Motors .................................................. 1234
5.6 Rotary Motors and ATP Synthesis ...................................................... 1236
5.7 DNA-Based Molecular Motors ............................................................ 1237
5.8 Simultaneous Measurement of Chemical and Mechanical Reactions .......... 1239

25 Visualizing Properties of Polymers at Interfaces .......... 1243
G. Reiter

1 Introduction ................................................................. 1244
1.1 Why are Interfacial Phenomena of Interest? ....................................... 1244
1.2 What Can Be Learned by Visualizing Polymers at Interfaces? .............. 1245

2 Instabilities of Thin Liquid Films Induced by Long-Range Forces ............. 1246

3 Quantitative Analysis of Dewetting Experiments .................................... 1254

4 Instabilities of a Moving Dewetting Rim ............................................. 1260
5  Entropically Caused Interfacial Tension between Chemically Identical Molecules ........................................... 1263
6  Dewetting and Aging of (Almost) Glassy Polymer Films .... 1267
7  Crystallization of Adsorbed Polymer Monolayers ............. 1272
8  Morphological Changes in Polymer Crystals .................. 1278
9  Coupled Growth in Superposed Polymer Lamellae ............ 1283
10 Polymer Crystallization in Nanometer-Sized Spherical Compartment ...................................................... 1286
11 Conclusions ............................................................. 1289

26  Optical Microscopy of Fluctuating Giant Vesicles and Motile Cells ......................................................... 1293
    H. G. Döbereiner

1  Introduction ............................................................ 1295
  1.1 Overview ......................................................... 1295
  1.2 From Passive to Active Systems .............................. 1295

2  Optical Methods and Image Analysis ........................... 1297
  2.1 Phase Contrast and Real Time Image Analysis .............. 1298
  2.2 Differential Interference Contrast ........................... 1303
  2.3 Total Internal Reflection Fluorescence ..................... 1303

3  Advanced Fluctuation Spectroscopy of Membranes .......... 1306
  3.1 The Area-Difference-Elasticity (ADE) Model ................ 1306
  3.2 Physical Chemistry of Membrane Curvature ................. 1308
  3.3 Experimental Spectra and Monte Carlo Simulations ........ 1311

4  High Resolution Motility Essays of Cells .................... 1316
  4.1 Motile Cells and Active Gels ................................. 1316
  4.2 Dynamic Phase Transition in Cell Spreading .............. 1316
  4.3 The Phase Model of Cell Motility ........................... 1320

5  Perspectives for Biological Physics ............................. 1321

A  Material Properties of Fluid Membranes ...................... 1322

B  The ADE Phase Diagram ......................................... 1329

C  Organization of a Motile Cell: The Story of Actin ........... 1334
27 Highly-Branched Polymers: From Comb to Dendritic Architectures ........................................... 1339
P. Viville, M. Schappacher, R. Lazzaroni & A. Deffieux

1 Introduction .......................................................... 1341

2 Linear Combs ....................................................... 1342
  2.1 Combs with Homopolymer Branches ......................... 1342
  2.2 Combs with Randomly Distributed A and B Branches ...... 1347
  2.3 Combs with A-B Diblock Branches .......................... 1348
  2.4 Stars with Comb Branches .................................... 1349

3 Homopolymers and Block-Like Copolymers with Hyperbranched Architectures ............................... 1354
  3.1 Controlled Branching ......................................... 1354
  3.2 Combs-on-Combs .............................................. 1356

4 Towards Water-Soluble Dendrigrafts ............................. 1361

5 Applications ....................................................... 1369
  5.1 Encapsulation of Molecules into Water-Soluble Dendrigrafts ................................................. 1369

6 Viral Diagnostic using Dendrigraft-Oligonucleotides .......... 1371

7 Synopsis .......................................................... 1375

28 AFM Imaging in Physiological Environment: From Biomolecules to Living Cells .............................. 1379
T. Cohen-Bouhacina & A. Maali

1 General Introduction ............................................... 1381

2 Principle and Operating of AFM ................................. 1383
  2.1 Principal Components of the Microscope .................... 1383
  2.2 Imaging Modes ............................................... 1385
  2.3 Biological Sample Preparation ............................... 1389
  2.4 AFM Tip Modifications ...................................... 1390

3 Imaging of Biological Systems ................................... 1391
  3.1 Biomolécules ................................................. 1392
  3.2 Membranes .................................................. 1395
4 Imaging of Cells ............................................. 1401
  4.1 Topography of Intact Cells ............................... 1401
  4.2 Cell Mechanical Properties .............................. 1403
  4.3 Example 1: Local Nanomechanical Motion of the Cell Wall
      of Saccharomyces cerevisiae ............................ 1405
  4.4 Example 2: Cell Adhesion ............................... 1408

5 Developments and Perspectives of the Dynamic Mode in Liquid
   Medium for Imaging Biological Systems ..................... 1418
  5.1 Examples of Dynamic Mode Imaging in Liquid .......... 1419
  5.2 Example of Improvement of Dynamic AFM in Liquid Small
      Amplitudes ............................................. 1423

6 Conclusion .................................................. 1432

Subject Index of Volume 2 ..................................... 1439

Author Index .................................................. 1455
Soft-Matter Characterization
Borsali, R.; Pecora, R. (Eds.)
2008, LXXII, 1452 p. In 2 volumes, not available separately., Hardcover