Index

acknowledged properties of hypotheses, 173ff
algorithm, xix, xxii, 245, 256, 267ff
angular size, 80ff
animal behavior, 40ff
ant colony scaling, 53ff
Any-Algorithm Hypothesis, 270
area-interconnectedness, 8ff,
axon radius, 8ff, 21

bands, 20
barrels, 20
Bayesian, xxiii, 75, 85ff, 140, 156ff
behavioral complexity, 29ff
Bertrand’s Paradox, 222ff
bird vocalization, 40
blobs, 20
body-limb networks, 58ff
body node, 58
body radius, 58
borderline region, 248, 276ff
branch angle, 2, 5
brightness, 140ff
bulging grid illusion, 137

carpentered world simplification, 94ff
cell type scaling, 53ff
Church’s Thesis, 244, 260ff
clusters, 20
color, 140ff
columns, 20
combinatorial degree, 27ff
complexification tree, 212ff
complexions, 186ff
complexity (behaviors, languages,
and networks), 26ff
computation, xiv, xv, xix, xxiv, 10,
19, 24, 27, 75, 136, 185,
239ff
conceptual framework, 170
consistent perception, 87ff
content words, 37
convolutions, 8ff, 19ff
corner Poggendorff illusion, 94, 105,
106, 109, 113
cortical surface area, 8ff, 19ff
cortical thickness, 8ff, 19ff
curve-fitting, 217ff
decidability, 244, 257, 258, 267, 273,
277, 283
deductive argument, 151
defensibility hierarchy, 181ff
defensible hypotheses, 180
digital circuits, 49
differentiation in the neocortex, 49ff
distinguishing properties of hypothe-
ses, 179
double Judd illusion, 94, 105, 106,
121, 126

313
Ebbinghaus illusion, 149
electronic circuit scaling, 53ff
encephalization, 42ff, 53
enumerative induction, 199ff
equivalent hypotheses, 183
essentialness of vagueness, 252, 279ff
ethobehavior, 42
ethogram, 42
expressive complexity, 26

flash-lag effect, 137ff
focus of expansion, 94ff
frequency-induction, 199, 203ff
frequency interpretation of probability, 153
function, xix
function words, 37

halting problem, 243, 255, 257
Hering illusion, 85, 94, 105, 106, 109, 113, 121, 127
higher-order vagueness, 248, 277ff
horizontal meridian, 96ff

illusory contours, 144
inconsistent perception, 87ff
increasing-\(C'\)-\(d\) approach, 28
induction, xxii, 151ff
inductive method, 153ff
ineliminability of vagueness, 251, 281ff
information criteria, 219ff
innateness, 164ff, 231ff
invariant functional units, 19ff, 28, 49, 52, 55
invariant hypothesis, 179
invariant-length approach, 28

Kanizsa square, 144
language complexity, 29ff
latency correction, 75ff
law-induction, 199, 206ff
learning, 151ff
Legos scaling, 53ff
lightness, 140ff
likelihoods, 86, 157ff, 219
limb data, 70
limb edge, 58
limbs on spherical bodies, 70
limb plane, 59
limb ratio, 63
limb tip nodes, 58
linear size, 80ff
logical probability, 153

max-MST hypothesis, 61ff
minicolumns, 19, 23, 55,
minimal spanning trees, 64
misperception of ambiguous angles, 118ff
misperception of angles with cues, 109ff
misperception of angular size, 121ff
module diameter, 8ff, 19ff
modules, 20
moving spiral, 140
motion-induced illusions, 137ff
Müller-Lyer illusion, 94, 105, 106, 121, 127

neocortex, 7ff, 53
neuron density, 8ff, 15ff
neuron encephalization, 53
neuron type scaling, 53ff
network diameter, 6, 18ff
networks under selective pressure, 51ff
neural networks, xv
No-Good-Reason-for-Non-Programs Hypothesis, 266
No-Good-Reason-for-R.E.-Subsets-of-Algorithms, 269
no-induction, 199ff
non-Euclidean perception, 99ff
No-R.E.-Subsets-of-Algorithms Hypothesis, 270
number of areas, 8ff, 15ff
number of digits, 67
number of limbs, 57
number of muscles, 42ff
number of neurons, 8ff, 15ff

objective size, see linear size
Occam’s Razor, 212ff
ontogeny of behavior, 46
ontogeny of language, 29ff
Orbison illusion, 75, 84, 87, 88, 94, 105, 106, 109, 114, 115, 130, 137

Paradigm Theory, 170ff
paradigms, 173ff
Peano Arithmetic, 241, 243, 265, 292
perception and decision theory, 86
phoneme development, 31
Poggendorff illusion, 94, 105, 106, 109, 113,
Ponzo illusion, 94, 105, 106, 127
posterior probabilities, 86, 154ff
power law, 7, 8, 28, 35, 38, 40, 53, 55,
predicate, 245ff
prescriptive theory of induction, 153
Principle of Defensibility, 189
Principle of Indifference, 195
Principle of No-R.E.-Subsets-of-Algorithms, 269
Principle of Program-Favoring, 265
Principle of Symmetry, 187
Principle of Sufficient Reason (Leibniz), 183, 196
Principle of Type Uniformity, 186
prior probabilities, 86, 156ff
probability, xxii, xxiii, 85ff, 151ff
probable focus of expansion, 106ff
probable scene underlying stimulus, 101ff 105ff
Programs-in-Head Hypothesis, 266
projection sphere, 96ff
principal lines, 94ff
projected size, see angular size
purpose, xviii

R.E., see recursively enumerable
random network, 7, 18
recursive, 264
recursively enumerable, 264ff
relationship between behavioral repertoire size and encephalization, 46
relationship between network size and complexity, 52ff
relationship between network size and differentiation, 52ff
representational momentum, 145
riddle of induction, 151ff
scaling, xx, 1, 6, 8ff, 57ff
scene, 79ff
selected networks, 53
self-organization, 3
semidecidability, 258
sentence length, 37
shortest-path tree, 4
simplicity, 212ff
small world network, 7, 18
soma radius, 8ff, 21
sorites paradox, 250, 279
spanning trees, 64
specialized component types approach, 28
standard Bayesian approach to perception, 85ff
Steiner trees, 5
stretched circles, 58
stretched-circle ratio, 63
surface color, 143ff
subjective probability, 153
symmetry, 176ff

tradeoff between latency and computational power, 75ff
traditional visual inference, 80ff
tree morphology, 4

undecidability, 244, 257, 258, 267, 273, 277, 283
universal learning machine, 151, 164ff
universal language approach, 27
university scaling, 53ff
upside-down ‘T’ illusion, 94, 105, 106, 128

VLSI, xxi, 2

vagueness, 239ff
vertical meridian, 96ff
visual inference, 79ff
vocabulary increase over history, 33ff
volume minimizing, xxi, 1, 2ff, 10, 13, 23ff, 61, 51

white matter volume, 8ff, 22
Widder’s illusion, 145
word development 31, 33
working memory limit, 38

x lines, 94ff

y lines, 94ff

z lines, 94ff
Zöllner illusion, 94
The Brain from 25,000 Feet
High Level Explorations of Brain Complexity, Perception, Induction and Vagueness
Changizi, M.A.
2003, XXVI, 330 p., Hardcover
ISBN: 978-1-4020-1176-4