INDEX

A
Attributes of science, 37

B
Bonding, 213
 alternative conceptions of, 215
 anthropomorphic explanations and, 216
 octet framework and, 215
 chemical education, importance in, 213-214
 electrical force explanations of, 218
 covalent bonding, 219
 ionic bonding, 220
 intermolecular bonding, 223
 metallic bonding, 222
 teaching of, 225-230

C
Chemistry
 attitudes to, 143
 changes in, implications for chemical education, 395
 distinctive nature of, 7,16
 influence on everyday life of, 108
 laws in, 16
 relation to chemical technology of, 108-110
 supervenience in, 17
 understanding of, 29, 30
Chemical education
 bonding in, 213
 chemical equilibrium in, 271
 chemical kinetics in, 293
 chemical thermodynamics in, 339
 context-based approaches to, 165
 curricula for general education in, 101
 curricula for vocational education in, 125
 curricular schemes for, 20, 21
 electrochemistry in, 317
 epistemological basis for, 18
 informal provision of, 143
 laboratory work in, 69
 models and modelling in, 47
 particulate nature of matter in, 189
 problem solving in, 235
 purposes for, 3
 research and development needed, 391
 teachers’ knowledge base for, 22, 370

Chemical equilibrium, 271
 chemical education in, 273
 kinetic approach to, 274
 research needed, 288-289
 thermodynamic approach to, 275
 historical development of, 272-273
 misconceptions of, 276-281
 teaching by means of, 281
 dynamic equilibrium, 283
 Le Chatelier’s Principle, 285
 reversible and incomplete reactions, 282

Chemical kinetics, 294
 historical models of, 294
 pre-university level chemical education in, 296
 students’ ideas, 296
 teachers’ ideas, 299
 textbook treatment of, 300
 research needed, 306-311
 university level chemical education in, 302
 students’ ideas, 302
 teaching, 304-306
Chemical thermodynamics, 340
 energy,
 students’ ideas about, 346
 teaching of, 346
 heat change,
 and chemical bonding, 342
 and energy change, 346
 and temperature change, 344
 exothermic and endothermic, 342
 relationship to, 340
 in secondary school, 348
 students’ ideas about, 349
 teaching of, 351-356
 in university, 350
 students’ ideas about, 350
Context-based curricula, 165
 arguments for, 166, 169, 171
 assessment within, 180
 effects on
 student attitudes, 177
 student understanding, 175-177
 teacher professional development, 179
 in primary education, 167
 in secondary education, 168
 ChemCom, 169
 Salter’s approach, 168
 in tertiary education, 170
 ChemConnections, 170
 Chemistry in Context, 170
 research needed, 182
Curricula for general chemical education, 101
 historical origins of, 102-104
 development of, 117-120
 faces of chemistry in, 113
 craft, 114
 ‘magic’, 115
 technological, 114
 radical revision, 111
 students’ role in, 111
 sedimentary nature of, 104-108
Curricula for vocational chemical education, 125
 organisation within educational system of, 125
 research, lack of, 139
 role in school chemistry, 136
 teachers of, 129
 traditionally trained, 130
 vocationally trained, 132
 timing of, 135

E
Electrochemistry, 317
 historical contexts for, 318
 measurement, 319
 particulate, 318
 phenomenological, 318
 new approaches to teaching of, 330
 electrochemical cells, 332
 redox reactions, 330
 redox reactions, 321
 student difficulties with, 321-329
 sources of, 329
 teaching of, 330
 terminology of, 317
Explanation in chemistry
 nature of, 15
 teaching of, 19

H
History and philosophy of science
 in science education, 8, 9, 31
 in chemical education, 10
History of chemistry in chemical education, 31
 use of ‘interactive historical vignettes’, 34, 35, 36, 39, 40
 attempts to introduce, 32,33
 obstacles to, 31
 research needed, 42
 resources for, 42, 43
I
Informal chemical education, 143
 significance of, 160
 roles,
 lectures in, 156
 live shows in, 154
 narrative, context, situation in, 145
 newspapers and magazines in, 150
 popular books in, 147
 science and technology centres in, 157
 television and video in, 151
Interactive historical vignettes, 34
 narrative for, 35
 design of, 36
 production of, 38
 effectiveness of, 39, 40
Laboratory work in chemical education
 central role of, 71
 curriculum model for, 82
 effectiveness of, 73-75
 in learning, 75-77
 research needed, 89
 socio-cultural perspective on, 84-87
 future roles for, 77-81
 implications for teaching, 87-89
 historical roles for, 70
 at secondary level, 71
 at tertiary level, 70
 instrumentation in, 81-82

M
Models
 in chemistry, 48
 in chemical education, 48
 computer-based, 51
 diversity of, 50
 precepts for good practice, 63
 research needed, 59
 roles of, 51
 textbook treatment of, 57-58
 modes of representation for, 47
Chemical Education: Towards Research-based Practice
2003, XXII, 430 p., Hardcover