TABLE OF CONTENTS

Tables and Figures .. vii
Acknowledgements .. xi
Contributors .. xiii

Chapter 1: Setting the Scene
Gilah C. Leder, Erkki Pehkonen, and Günter Törner .. 1

PART 1 BELIEFS: CONCEPTUALIZATION AND MEASUREMENT

Chapter 2: Framing Students’ Mathematics-Related Beliefs. A Quest for Conceptual Clarity and a Comprehensive Categorization
Peter Op’t Eynde, Erik de Corte, and Lieven Verschaffel .. 13

Chapter 3: Rethinking Characterizations of Beliefs
Fulvia Furinghetti and Erkki Pehkonen .. 39

Chapter 4: Affect, Meta-Affect, and Mathematical Belief Structures
Gerald A. Goldin .. 59

Chapter 5: Mathematical Beliefs – A Search for a Common Ground: Some Theoretical Considerations on Structuring Beliefs, Some Research Questions, and Some Phenomenological Observations
Günter Törner .. 73

Chapter 6: Measuring Mathematical Beliefs and Their Impact on the Learning of Mathematics: A New Approach
Gilah C. Leder and Helen J. Forgasz .. 95

Chapter 7: Synthesis - Beliefs and Mathematics Education: Implications For Learning, Teaching, and Research
Douglas B. McLeod and Susan H. McLeod .. 115

PART 2 TEACHERS’ BELIEFS

Chapter 8: Mathematics Teacher Change and Development. The Role of Beliefs
Melvin (Skip) Wilson and Thomas J. Cooney .. 127

Chapter 9: Mathematics Teachers’ Beliefs and Experiences with Innovative Curriculum Materials. The Role of Curriculum in Teacher Development
Gwendolyn M. Lloyd .. 149
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A Four Year Follow-up Study of Teachers' Beliefs after Participating in a Teacher Enhancement Project</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Lynn C. Hart</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Belief Structure and Inservice High School Mathematics Teacher Growth</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Olive Chapman</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Participation and Reification in Learning to Teach: The Role of Knowledge and Beliefs</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Salvador Llinares</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>A Study of the Mathematics Teaching Efficacy Beliefs of Primary Teachers</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>George Philippou and Constantinos Christou</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Situating Research on Mathematics Teachers’ Beliefs and on Change</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Stephen Lerman</td>
<td></td>
</tr>
</tbody>
</table>

PART 3 STUDENTS’ BELIEFS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Beliefs about Mathematics and Mathematics Learning in the Secondary School: Measurement and Implications for Motivation</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Peter Kloosterman</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>“The Answer is Really 4.5”: Beliefs about Word Problems</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>Brian Greer, Lieven Verschaffel, and Erik De Corte</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Beliefs about the Nature of Mathematics in the Bridging of Everyday and School Mathematical Practices</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>Norma Presmeg</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Beliefs and Norms in the Mathematics Classroom</td>
<td>313</td>
</tr>
<tr>
<td></td>
<td>Erna Yackel and Chris Rasmussen</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Intuitive Beliefs, Formal Definitions and Undefined Operations: Cases of Division by Zero</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>Pessia Tsamir and Dina Tirosh</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Implications of Research on Students’ Beliefs for Classroom Practice</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Frank K. Lester, Jr.</td>
<td></td>
</tr>
</tbody>
</table>

Index

355
TABLES AND FIGURES

List of Tables

Chapter 3
Table 1: The nine characterizations of belief included in the questionnaire 47
Table 2: Responses to the 10 items by individual respondents 49
Table 3: Degree of agreement/disagreement of the respondents with the characterizations 49

Chapter 6
Table 1: Selected definitions of beliefs 96
Table 2: Summary of selected methods for measuring attitudes/beliefs 98
Table 3: Beliefs in recent mathematics education research 101

Chapter 10
Table 1: Percent of teachers responding by item on factors they believe influenced their change 169

Chapter 13
Table 1: Proportions of indicative items by institution and overall mean 222
Table 2: A summary of responses in the interviews by scale dimension and preservice education 227

Chapter 14
Table 1: Teachers’ positions within different pedagogic modes 239

Chapter 16
Table 1: Examples of P-items used in Greer (1993) and Verschaffel et al. (1994) 275
Table 2: Percentages of Realistic Reactions (RRs) on selected P-items in various studies 276
Table 3: Percentages of Realistic Reactions (RRs) on selected P-items in the study of Community College students by Mukhopadhyay and Greer (2000) (N = 13) 278
Table 4: Percentages of Realistic Reactions (RRs) on selected P-items in the study of teachers in training by Verschaffel et al. (1997) (N = 332) 280
Table 5: Percentages of scores for realistic and non-realistic answers on P-items for the first-year and third-year student teachers (Verschaffel et al., 1997) 280
Chapter 17 Table 1: Student beliefs concerning the nature of mathematics
Table 2: Activities described by students
Table 3: Other activities in which potential for math was seen by students
Table 4: Beliefs of students about the nature of mathematics, Fall 1999
Chapter 18 Interpretive framework for analyzing individual and collective activity classrooms
Chapter 19 Table 1: Percentages of responses to a+0 (a≠0) expressions by grade and level of mathematics achievement (in %)
Table 2: Percentages of responses to 0+0 expressions by grade and level of mathematics achievement (in %)

List of Figures
Chapter 2 Figure 1: Different categorizations of students’ beliefs
Figure 2: Constitutive dimensions of students’ mathematics-related belief system
Figure 3: A framework of students’ mathematics-related beliefs
Chapter 5 Figure 1: Different belief structures
Chapter 6 Figure 1: Excerpts from the experience Sampling Form
Figure 2: The spread of activities in which students in our study were engaged at the time they were signalled, overall and by gender
Figure 3: Overview of Caitlin and Boyd’s activities when beeped
Figure 4: Results from selected ESFs for two case studies
Chapter 11 Figure 1: Elise’s beliefs
Figure 2: Mark’s beliefs
Chapter 14 Figure 1: Fields and sub-fields in the production of positions of teachers
Chapter 16 Figure 1: Factors shaping beliefs about word problems
Chapter 17 Figure 1: Melanie’s semiotic chain for combinations of various stitch designs
Figure 2: Derek’s semiotic chain for the symmetries of a tennis court

ix
306
309
Beliefs: A Hidden Variable in Mathematics Education?
Leder, G.C.; Pehkonen, E.; Törner, G. (Eds.)
2002, XIX, 364 p., Softcover