Contents

List of Figures ix
List of Tables xi
Preface xiii
Acknowledgments xv
Foreword xvii
Dov M. Gabbay
Introduction xx
David J. Pym

Part I PROPOSITIONAL BI

1. INTRODUCTION TO PART I 3
 1 A Proof-theoretic Introduction 3
 2 A Semantic Introduction 6
 2.1 Algebraic and Topological Semantics 6
 2.2 Categorical Semantics 6
 2.3 Kripke Semantics 7
 3 Towards Classical Propositional BI 10
 4 Logical Relations 11
 5 Computational Models 11

2. NATURAL DEDUCTION FOR PROPOSITIONAL BI 13
 1 Introduction 13
 2 A Natural Deduction Calculus 13
 3 The $\alpha\lambda$-calculus 19
 4 Normalization and Subject Reduction 25
 5 Structural Variations on BI and $\alpha\lambda$ 28
5.1 Affinity and Relevance 28
5.2 Dereliction 30
5.3 Non-commutativity 30
5.4 More Combinators 31

3. ALGEBRAIC, TOPOLOGICAL, CATEGORICAL 33
 1 An Algebraic Presentation 33
 2 A Topological Presentation 35
 3 A Categorical Presentation 36
 3.1 Day's Construction 45
 3.2 Conservativity 46
 3.3 Structural Variations 47

4. KRIPKE SEMANTICS 51
 1 Kripke Models of Propositional BI 51
 2 Soundness and Completeness for BI without ⊥ 55
 3 Kripke Models Revisited 65

5. TOPOLOGICAL KRIPKE SEMANTICS 67
 1 Topological Kripke Models of Propositional BI with ⊥ 67
 2 Soundness and Completeness for BI with ⊥ 71
 3 Grothendieck Sheaf-theoretic Models 76

6. PROPOSITIONAL BI AS A SEQUENT CALCULUS 89
 1 A Sequent Calculus 89
 2 Cut-elimination 89
 3 Equivalence 93
 4 Other Proof Systems 95

7. TOWARDS CLASSICAL PROPOSITIONAL BI 97
 1 Introduction 97
 2 An Algebraic View 98
 3 A Proof-theoretic View 100
 4 A Forcing Semantics 102
 5 Troelstra's Additive Implication 103
Contents

8. BUNCHE & LOGICAL RELATIONS
 1. Introduction
 2. Kripke αλ-models
 2.1 Kripke αλ-models and DCCs
 3. Bunched Kripke Logical Relations

9. THE SHARING INTERPRETATION, I
 1. Introduction
 2. Proof-search and (Propositional) Logic Programming
 3. Interference in Imperative Programs
 4. Petri Nets
 5. CCS-like Models
 6. A Pointers Model

Part II PREDICATE BI

10. INTRODUCTION TO PART II
 1. A Proof-theoretic Introduction to Predicate BI
 2. Kripke Semantics for Predicates and Quantifiers
 3. Fibred Semantics and Dependent Types
 4. Computational Interpretations

11. THE SYNTAX OF PREDICATE BI
 1. The Syntax of Predicate BI
 2. Variations on Predication

12. NATURAL DEDUCTION & SEQUENT CALCULUS
 1. Propositional Rules
 2. Quantifier Rules
 3. Strong Normalization and Subject Reduction
 4. Predicate BI as a Sequent Calculus

13. KRPKE SEMANTICS FOR PREDICATE BI
 1. Predicate Kripke Models
 2. Elementary Soundness and Completeness for Predicate BI

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>107</td>
</tr>
<tr>
<td>1</td>
<td>107</td>
</tr>
<tr>
<td>2</td>
<td>107</td>
</tr>
<tr>
<td>2.1</td>
<td>115</td>
</tr>
<tr>
<td>3</td>
<td>116</td>
</tr>
<tr>
<td>9</td>
<td>121</td>
</tr>
<tr>
<td>1</td>
<td>121</td>
</tr>
<tr>
<td>2</td>
<td>122</td>
</tr>
<tr>
<td>3</td>
<td>129</td>
</tr>
<tr>
<td>4</td>
<td>134</td>
</tr>
<tr>
<td>5</td>
<td>136</td>
</tr>
<tr>
<td>6</td>
<td>138</td>
</tr>
<tr>
<td>10.1</td>
<td>147</td>
</tr>
<tr>
<td>1</td>
<td>147</td>
</tr>
<tr>
<td>2</td>
<td>151</td>
</tr>
<tr>
<td>3</td>
<td>154</td>
</tr>
<tr>
<td>4</td>
<td>156</td>
</tr>
<tr>
<td>11.1</td>
<td>157</td>
</tr>
<tr>
<td>1</td>
<td>157</td>
</tr>
<tr>
<td>2</td>
<td>162</td>
</tr>
<tr>
<td>12.1</td>
<td>163</td>
</tr>
<tr>
<td>1</td>
<td>163</td>
</tr>
<tr>
<td>2</td>
<td>168</td>
</tr>
<tr>
<td>3</td>
<td>172</td>
</tr>
<tr>
<td>4</td>
<td>174</td>
</tr>
<tr>
<td>13.1</td>
<td>179</td>
</tr>
<tr>
<td>1</td>
<td>179</td>
</tr>
<tr>
<td>2</td>
<td>186</td>
</tr>
</tbody>
</table>
14. TOPOLOGICAL KRIPKE SEMANTICS FOR PREDICATE BI
 1 Topological Kripke Models of Predicate BI with ⊥ 201
 2 Soundness and Completeness for predicate BI with ⊥ 202

15. RESOURCE SEMANTICS, TYPE THEORY & FIBRED CATEGORIES 207
 1 Predicate BI 207
 2 Logical Frameworks 209
 3 The λA-calculus 213
 4 Context Joining 219
 5 Multiple Occurrences 219
 6 Variable Sharing 221
 7 Equality 223
 8 Basic Properties 223
 9 The Propositions-as-types Correspondence 225
 10 Kripke Resource Semantics for λA 227
 11 Kripke Resource λA-structure 228
 12 Kripke Resource Σ-λA-model 234
 13 Soundness and Completeness 243
 14 A Class of Set-theoretic Models 253
 15 Towards Systematic Substructural Type Theory 256

16. THE SHARING INTERPRETATION, II 263
 1 Logic Programming in Predicate BI 263
 2 ML with References in RLF 267

Bibliography 271

Index 283
The Semantics and Proof Theory of the Logic of Bunched Implications
Pym, D.J.
2002, XLIX, 290 p., Hardcover