2 The Microanatomy of the Mammalian Spleen

Mechanisms of Splenic Clearance

FERN TABLIN, VMD, PhD, JACK K. CHAMBERLAIN, MD, FACP, and LEON WEISS, MD

2.1. INTRODUCTION

The spleen is a uniquely adapted lymphoid organ that is dedicated to the clearance of blood cells, microorganisms, and other particles from the blood. This chapter deals with the microanatomy of the spleen, its highly specialized extracellular matrix components, distinctive vascular endothelial cell receptors, and the extraordinary organization of the venous vasculature. We also address the cellular mechanisms of splenic clearance, which are typified by the vascular organization of the spleen; mechanisms and regulation of clearance, and the development of a unique component: specialized barrier cells, which may be essential to the spleen’s clearance functions in stress.

2.2. ANATOMICAL ORGANIZATION OF THE SPLEEN

The mammalian spleen consists of an encapsulated, trabeculated pulp, made up of stroma and vasculature supporting a large population of circulating, migrating, and differentiating blood and hematopoietic cells (Figs. 1–6). The vascular layout of the spleen is as follows: arteries enter the capsule and move into the splenic parenchyma within the trabeculae. From there, they enter the white pulp (WP), where they are surrounded by lymphocytes. The white pulp selectively clears lymphocytes and their accessory cells from the blood. They equip the spleen to engage in immunological reactions. Arteries continue into the adjacent marginal zones (MZs), which consist of shells of tissue surrounding the white pulp, and are interposed between white pulp centrally and red pulp (RP) peripherally. Marginal zones are heavily trafficked, receiving blood from many arterial terminals, and selectively distribute its components to other parts of the spleen. The marginal zone also stores erythrocytes, platelets, and monocyte-macrophages, and initiates their processing. The red pulp is that large part of the pulp that extends outward from the marginal zone. It too receives arterial terminals, clears, tests, and stores erythrocytes, and is primed for erythroclasia and erythropoiesis. Blood deposited in the marginal zone and red pulp moves through the filtration beds, and is drained by a system of venous vessels in both the marginal zone and red pulp.

2.2.1. CAPSULE AND TRABECULAE

The human spleen weighs approx 150 g, in adults, and is enclosed by a capsule composed of dense connective tissue, with little smooth muscle (Faller, 1985; Weiss, 1983, 1985). This arrangement reflects the minimal contractile role of the capsule and trabeculae in altering the blood volume of the human spleen, under normal circumstances. The capsule measures 1.1–1.5 mm thick, and is covered by a serosa, except at the hilus, where blood vessels, nerves, and lymphatics enter the organ. There are two layers of the capsule: This can be determined by the orientation of collagen fibers (Faller, 1985), which are moderately thick and uniform, but which become finer in the deeper regions, where the transition to pulp fibers occurs. There are also elastic fibers present in the capsule. The capsule is continuous on its inner surface, with a richly ramified system of trabeculae, which penetrates and supports the pulp.

In most mammalian spleens, the capsule is sympathetically innervated, and there is a species-dependent blend of smooth muscle and collagenous tissue. In certain species, the capsule and trabeculae are rich in smooth muscle. These spleens, of which the equine and feline are examples, are termed “storage spleens.” Sympathetic stimulation results in the contraction of the capsule and trabeculae, causing delivery of large reserves of blood into the circulation. The horse has a huge spleen, and its outstanding athletic prowess is dependent on the spleen’s capacity to increase the hematocrit, and, thus, the oxygen-carrying capacity of the circulation (Persson et al., 1973a,b). In fact, splenic reserves of mature erythrocytes are so large and readily mobilized that the reticuloocytes are rarely present in the circulation, although they are produced in the bone marrow, which holds them in reserve and releases them only under conditions of severe chronic anemia. Thus, the splenic store of mature erythrocytes can be used to compensate for all but the most persistent, long-term blood loss. In contrast, in the spleen of humans, rabbits, dogs, and mice, erythrocyte reserves are quite small. These spleens do retain some significant storage capacity, however, holding large numbers of platelets in ready reserve. Because these less-contractile spleens have been thought to have greater immunological and other antimicrobial capacity, they have been termed “defense spleens.”

2.2.2. SPLENIC PARENCHYMA

The splenic parenchyma, or pulp, consists of white pulp, the intermediate marginal zone, and
2.2.2.1. White Pulp

The white pulp consists predominantly of lymphocytes, antigen-presenting cells, and macrophages, lying on a specialized reticular meshwork composed of concentric layers of stromal cells, now recognized to be specialized fibroblasts (Borrello and Phipps, 1996; Van Vliet et al., 1986; Fujita et al., 1982, 1985). The reticular meshwork is most dense in association with the periarteriolar lymphatic sheath (PALS) and marginal zone. Matrix proteins produced by these fibroblasts include: type III collagen, laminin, fibronectin, vitronectin, and tenascin (Liakka et al., 1995). These proteins may play an important role in the migration of lymphocytes during fetal development of lymphatic tissue, as well as...
during the normal adult immune response. Fibroblasts in the white pulp and marginal zone may express the lymphoid marker, Thy-1 (Borrello and Phipps, 1996), thus forming a distinct microenvironment for T-cell interaction (Van Vliet et al., 1986).

The organization of the white pulp is closely associated with its arterial supply (Fig. 2). Those lymphocytes immediately adjacent to the central arteries constitute the PALS. The lymphocytes in the PALS are predominantly T-cells; B-cells are concentrated in the lymphatic nodules, most often situated at the periphery, or at points of arterial branching (Fig. 3).

The central artery supplies radial branches to the white pulp, marginal zone, and red pulp, and terminates in an attenuated vessel of variable structure supplying the red pulp (Fig. 8). The distal portion of the vessel may be surrounded by a loose macrophage arrangement known as the “periarterial macrophage sheath” (PAMS), which is usually not prominent in humans (Fig. 9; Blue and Weiss, 1981; Biussens et al., 1984; Weiss, 1983; Weiss et al., 1985). It is, however, more obvious in younger subjects. PAMS are also found in mouse and rabbit spleens; however, in canine, feline, herbivore, and avian spleens, the macrophages are organized in a tight cuff or sheath, also referred to as an “ellipsoid.”

Deep efferent lymphatic vessels are also present in white pulp, where they are entwined with arterial vessels. These lymphatics run from the white pulp into the trabeculae, then leave the spleen at the hilus. The splenic lymphatic vessels are mostly well-developed, but inconspicuous, because, running in lymphocyte-crowded beds and possessing a lymphocyte-crowded lumen surrounded by the thinnest of vascular walls, they are difficult to discern from their background. These lymphatic vessels carry lymph countercurrent to the flow of blood in their adjacent arterial vessels. They provide splenic lymphocytes with a major efferent pathway for the migration of immunologically competent lymphocytes of the recirculating lymphocyte pool. Venous vessels are notably absent from the white pulp, and are discussed further in the Subheading 2.2.3.

2.2.2.2. Marginal Zone The marginal zone, as its name implies, lies at the periphery of the white pulp and its outer surface blends with the structure of the red pulp. In the human spleen, the reticular meshwork is fine; and the zone is the site of termination of many arterioles, which frequently bifurcate just before their termination (Fig. 10). The marginal zone receives a disproportionately large number of terminal arterial vessels. Blood entering the marginal zone is directed selectively to other arterial beds: Lymphocytes and their accessory cells pass to the white pulp (van Ewijk and Nieuwenhuis, 1985); platelets and erythrocytes pass into the red pulp. Studies on the kinetics of splenic cell migration have shown that 25% of the cells that transit through the spleen stay in the marginal
Fig. 2.6. (A) Transmission micrograph; (B) key to part (A). Red pulp, human spleen, thalassemia. Human spleen is a sinusal spleen, and this field contains a venous sinus. Its wall runs vertically, its luminal surface to the right lined by cross-sections of the rod-shaped endothelial cells. Nuclei are present in three of these endothelial cells. The basal portion of the endothelial cell is rich in longitudinally running filaments, which stipple the cell, and, when interwoven, present as dense plaques. The fenestrated basement membrane (Bas Mb) appears in short segments at the base of the endothelium. Red blood cells in thalassemia vary considerably in appearance, and are floppy, tending to fold flexibly on one another. Many reticulocytes are present, and erythroblasts (Eb) circulate. An Eb, with its nucleus deeply constricted in two places, is passing through the endothelium in an interendothelial slit (the erythroblast itself is deeply constricted in the interendothelial slit at the lower nuclear constriction). The cord on the left is fully packed with leukocytes and reticular cells (RCs). The latter serve as the fibroblastic stroma of the cord, and ensheathe reticular fibers (RFs) (×8000).

Fig. 2.7. Scanning electron micrograph of the human spleen at low power. Central artery (CA), white pulp (WP), marginal zone (MZ), red pulp (RP) and sinuses (S) in a freeze-cracked surface of the splenic pulp. (Reproduced with permission from Kashimura, M. and Fujita, T. [1987]).

Fig. 2.8. Scanning electron micrograph of the human spleen. A longitudinally fractured arterial capillary terminates in the cordal spaces of the red pulp. The arterial capillary fans out to the right-hand side, where fenestrations provide openings to the cordal spaces (×1350). (Adapted with permission from Fujita, T., et al. [1985]).
the spleen at any given time, and it has been calculated to surpass the combined traffic of all lymph nodes in the body (Ford, 1969). Numerous studies clearly demonstrate that entrance and retention of T- and B-cells into white pulp is not a random process, but requires a selective interaction between lymphocytes and endothelial cells. This interaction may be mediated by the mucosal adhesion molecule, MAdCAM-1, which has previously been shown to be involved in lymphocyte homing to mucosal sites, and is expressed on the high endothelial venules of Peyer’s patches and mesenteric lymph nodes. MAdCAM-1 has been shown to be present on endothelial cells of marginal zone terminal arterioles closest to the white pulp of the mouse spleen (Kraal et al., 1995), and may serve to regulate lymphocyte traffic to the white pulp. Additionally, marginal zone macrophages have been suggested to play a similar role in the migration of lymphocytes to white pulp (Buckley et al., 1987; Lyons and Parish, 1995). In the alyymphoplastic aly mutant mouse, which is affected by a spontaneous autosomal-recessive mutation, there is a deficiency in systemic lymph nodes, Peyer’s patches, and the splenic marginal zone. This phenotype can be rescued by bone marrow transplantation, and provides further evidence for the role of the marginal zone in lymphatic development and its relationship to sites of lymphocyte-mucosal homing (Koike et al., 1996).

2.2.2.3. Red Pulp

Three-fourths of the volume of the human spleen consists of the red pulp, which comprises four vascular structures in sequence: slender nonanastomosing arterial vessels (pennicilli), the splenic cords, or cords of Bilroth; the venous sinuses; and the pulp veins. All of these vessels are supported by a reticular meshwork (Fig. 11), provided by fibroblasts and their various extracellular matrix proteins, similar to those noted for the white pulp: fibronectin, laminin, vitronectin, tenascin, type III collagen, as well as type IV collagen (Liakka et al., 1995). Macrophages are also found in the splenic cords, both as single cells associated with the reticular fibroblasts and as constituents of the PAMS associated with arterioles of the red pulp.
The human, rat, and dog spleens are of the sinusal type. In the human spleen, the splenic sinuses comprise approx one-third of the volume of the red pulp (van Krieken and te Velde, 1988); they consist of long anastomosing vascular channels, which ultimately drain into the pulp veins. Red blood cells can be seen protruding into the sinuses through the junctions of the endothelial cells. Tight junctional complexes are present at regular intervals along their lateral and basolateral surfaces (Uehara and Miyoshi, 1997), and, in the rat spleen, macula occludens are also present at irregular intervals.

Sinusal endothelial cells have two sets of cytoplasmic filaments: The intermediate filaments (vimentin) are loosely arranged; thin filaments are tightly organized into dense actin bands in the basal cytoplasm (Drenckhahn and Wagner, 1986). These stress fibers arch between attachments to circumferential components of the basement membrane, and contain nonmuscle myosin, and probably contract, to vary the tension in the endothelial cell. Endothelial cell-signaling, via adherens junctions, can result in contraction of adjacent endothelial cells resulting in the production of interendothelial slits. Potential slit-like spaces, which can be penetrated by cells flowing from the pulp spaces (Fig. 12–16), are a critical point in the flow pathway of particulates through the spleen, and represent an important regulator of selective particulate flow (Fig. 6).

A fenestrated basement membrane is present on the abluminal surface of the endothelial cells; its transverse ring-like component reinforces the sinus structure, like the hoops of a barrel (Fig. 15; Groom, 1987; Weiss, 1983). Immunoelectron microscopic studies have shown that these ring-like fibers are predominantly composed of type IV collagen and laminin, with sparser components of type III collagen and tenascin (Liakka et al., 1995), produced both by the adventitial reticular cells and by endothelial cells which probably associate with this matrix through the β-1 integrins on their basolateral surfaces.

In the human spleen, the basement membrane of the venous sinuses has well-marked circumferential components and a lesser longitudinal component. It is continuous with the reticular meshwork of the surrounding cords, and is overlaid with fibroblasts. The junction of the venous sinuses with the pulp veins is obvious, because there is a transition from rod-like endothelial cells with a fenestrated basement membrane, to the flattened endothelium of the pulp veins and a continuous basement membrane. This transition is most easily seen as the pulp veins enter the trabeculae, and

Fig. 2.12. Scanning electron micrograph of the red pulp of the human spleen at low power. The splenic cords (B) are fractured, and the sinuses (S) are seen mostly from the surface. The endothelial cells (or “rod cells of Weidenreich,” W) are arranged in parallel, and show enlarged nuclear portions, which project into the lumen of the sinus. Red blood cells can be seen protruding into the sinuses through the junctions of the endothelial cells. MP, macrophages. SA, sheathed artery (×875). (Reproduced, with modification, with permission from Fujita, T. [1974]).

Fig. 2.13. Scanning electron micrograph of the red pulp of the human spleen, at higher power than in Fig. 12. The splenic cords are seen to be supported by reticulum cells (RCs), and the cord meshwork contains macrophages, leukocytes, mainly neutrophils (N), and blood platelets (P). The endothelial pattern of the sinuses (S) is demonstrated; the sinuses in the upper part of the micrograph suggest a perforated structure (×1800). (Reproduced by permission from Fujita, T. [1974]).
can be abrupt and without an intermediate structural organization (Weiss, 1983).

Nonsinusal spleens lack venous sinuses, and efferent blood is received initially by pulp veins. In the mouse, cat, and horse, pulp veins are thin-walled, large-lumened vessels with squamous endothelium, and a thin, intermittent basement membrane (Fig. 4). They typically display transmural apertures, which may be large. Pulp veins often lie close to trabeculae, and enter them, becoming trabecular veins. The walls of pulp veins, unlike venous sinuses, offer little impedance to the passage of blood cells, because of their large transmural apertures.

2.3. PATHWAYS OF BLOOD FLOW

The afferent arterial vessels course through the white pulp as central arteries, and their radial branches supply the marginal zone or red pulp. The attenuated main stem of a central artery drains, in most instances, into the reticular meshwork of the red pulp. In humans, the majority of the arterial terminations have no endothelial continuity with venous structures, and the circulation is predominantly “open” in form, with the pathway of blood flow crossing a connective tissue space. This does not mean that, in normal circumstances, there is a random process of flow in the intermediate circulation, since the orientation of the arterial terminations to the splenic sinus walls, and of the reticular cell stroma intervening between arterial termination and sinus wall, effectively produces an unimpeded pathway. As a consequence, the greater part of the blood flow through the human spleen passes through a functional “fast pathway,” in contrast to the small fraction of flow that traverses the slow pathway (Groom, 1987). However, the volume of blood is greater in the “slow pathway,” because of its slow turnover; this occupies part of the pulp cords, where they are both physiologically and structurally open. Groom et al. and Levesque and Groom (1981) have demonstrated vascular pathways in the marginal zone, which have the potential for bypassing the red pulp; these are discussed in more detail in Chapter 3.

The regulation of volume and distribution of blood flow is critical to the effective functioning of the spleen. A high proportion of a bolus of abnormal red blood cells entering the spleen is retained on initial passage through the organ, indicating that the filtration process is dependent on the structures of the afferent circulation, and does not require adaptive changes and prolonged flow (Groom, 1987). The arterial structures appear to direct plasma to the marginal zone, marginated cells to the white pulp, and marginal zone; the axial flow (especially erythrocytes and platelets) is directed to the red pulp. The marginal zone receives an overly large number of terminal arterial vessels, and blood entering this area is selectively channeled to either the white or red pulp.

The arteries of the human spleen appear to have sympathetic innervation, but parasympathetic innervation remains to be demonstrated (Reilly, 1985). Plasma skimming appears to require an intact nerve supply; pooling and concentration of red blood cells are inhibited by sympathomimetic drugs.

The reticular stroma of the human marginal zone and the PALS contains numerous reticular cells, which have smooth muscle actin and myosin (Toccanier-Pelte et al., 1987), which are not present in red pulp. These “myoid” cells have long, slender processes, which are intimately associated with reticular fibers. Similar contractile
Reticular cells have been shown to be present throughout horse and dog spleen, and are associated with sympathetic nerve terminals (Tablin and Weiss, 1983; Blue and Weiss, 1981). Smooth muscle cells and fibroblasts are closely related, and many fibroblastic cells are contractile. This group includes reticular cells of the spleen, as discussed previously, barrier cells discussed in Subheading 3.3., the myofibroblasts of wound healing, and the myoepithelial cells encircling epithelial structures, notably the ducts and acini of glands. This arrangement, in addition to the smooth muscle cells associated with PAMS, may regulate cellular traffic in areas of high blood flow.

Blood that enters the red pulp is in an open anatomical system, in which significant filtration can occur. This blood continues through the pulp sinuses, pulp veins, and trabecular veins, and subsequently the splenic veins at the hilus. Because the splenic vein enters the portal vein, any increase in portal pressure increases the blood contained in the spleen, and consequently the blood volume of the spleen. When this volume increase is long-standing, it may result in congestive splenomegaly. The myoelastic structure of the splenic vein suggests that the diameter of the vein can be actively varied to modify both intrasplenic pressure and venous flow (Reis and Ferraz de Carvalho, 1988). Secondary splenic distention could in turn modify the relationship of the arterial terminations to the sinus walls, increasing the length and duration of the flow pathway, and improving the filtration efficacy of the red pulp.

2.3.1. FILTRATION PATHWAY The tissues between the terminal arterial vessels and the initial venous vessels comprise a reticulum or reticular meshwork, composed of reticular cells and their associated extracellular matrix “reticular” fibers. In the human spleen, and indeed in spleens in general, the pulp consists of a reticular meshwork in which arterial and venous vessels are supported by adventitial reticular cells, which branch out perivascularly and contribute to the reticular meshwork. If the meshwork is extensive enough, it will contain reticular cells that are entirely confined to it, without an adventitial relationship to blood vessels. In the human spleen, as well as rat, dog, and horse spleens, the reticular meshwork is well-developed. These cells form a system of thin-walled domains reinforced by extracellular matrix fibers. These domains communicate with one another and, as a system, are open, directly or indirectly, to the blood that enters the spleen. Variation in the location and arrangement of the reticular cells, and their matrix components, occurs in a variety of meshworks, termed, by Weiss (1985), “filtration beds.”

Two types of filtration beds make up the white pulp, which serve to direct T-cells to the PALS, and hold them there for a period of hours, and B-cells to lymphatic nodules or their mantles, and, for a somewhat longer time than T-cells, hold them there. Reticular cells, dendritic cells, and macrophages probably regulate this traffic. Lymphocytes that do not immunologically react in the white pulp, are cleared by the deep efferent lymphatics. In pathologic
states, filtration beds, through which lymphocytes normally flow rather rapidly, may hold them for long periods, as in the parasinusoidal red pulp (i.e., splenic cords) in malaria.

In sinusoidal spleens, the filtration beds comprising the marginal zone are unusually fine-meshed, and are associated with the large number of terminal arterioles present in this region. These extensive arterial terminal vessels deposit large volumes of blood into the marginal zone, making it one of the most highly trafficked parts of the spleen. Blood cells entering the marginal zone may migrate selectively to other filtration beds, e.g., lymphocytes, may go to the white pulp, to be sorted into T- and B-cell zones. In addition, blood cells may be held in the marginal zone and processed there. Damaged erythrocytes are pooled and phagocytosed, monocytes are sequestered and differentiate into macrophages, and platelets may be stored in the marginal zone, in ready reserve for quick release into the circulation.

The reticular meshwork of the red pulp consists of additional terminal arterioles, which empty into this specialized domain, and venous vessels, which drain it. Red pulp filtration beds are known as “pulp spaces,” and are especially extensive in non-sinusoidal spleens, because of their role as storage spaces. In sinusoidal spleens, this meshwork is more limited, because of the vast anastomosing system of venous sinuses. Macrophages present in this domain may quickly increase in number, as a result of trapping and differentiation of circulating monocytes. In addition, the resident macrophage population in the PAMS also participates in cellular surveillance. Red pulp filtration beds contain reticulocytes, which undergo final maturation to erythrocytes before their release into the circulation, and, at the end of their life-span, lead to their phagocytosis. In murine spleens, these filtration beds regularly support extramedullary hematopoiesis, particularly, erythroid stem cell proliferation and differentiation (colony-forming unit, burst-forming unit, erythrocytes). This diverse filtration bed also is the site of lymphocyte sequestration and plasma cell proliferation, as well as antibody production in infectious disease, as in malaria, cited previously.

2.3.3. BARRIER-FORMING SYSTEMS Reticular cells constitute a large, stable component of the filtration beds of hematopoietic tissues. Like many fibroblastic cell types, notably the myofibroblast of wound healing, they appear to be contractile, as shown by the significant numbers of actin filaments they contain. Indeed, extracellular matrix formation and contractility are common properties of these cells. Smooth muscle cells are girdled by a sleeve of reticular fibers and the elastic fibers they synthesize. Curiously, reticular fibers (preponderantly collagen type III) lie on the reticular cell cytoplasm, as closely as the elastic fibers on their smooth muscle cells. Myoepithelial cells, whose contractile tentacles squeeze down upon acini and ducts of mammary and other glands, forcing out secretion, and which, by secretion of extracellular matrix of their basal lamina, illustrate the combination of extracellular matrix formation and contractility.

Splenic filtration beds do not normally show a high level of filtration, since more than 90% of the blood circulates through the spleen as rapidly as through tissues with a conventional vascular tree. Yet splenic behavior may change rapidly in stress, and the organ can become hypersplenic. We have documented the presence of contractile fibroblasts that are capable of dynamically altering the responsive nature of this filtration domain. These contractile cells, or one or more of their subsets, are capable of fusing with one another in the filtration beds, to form complex, branching, symbiotic sheets that form a variety of barriers. These cells have been termed “activated reticular cells” (Weiss et al., 1986), but, on the basis of continued studies, we now define them as “barrier cells” (Weiss, 1991), recognizing their remarkable capacity for diverse structural and functional barrier formation. Barrier cells are present in large numbers in murine and human spleens, under conditions in which splenic clearance appears heightened, pathologically (including sickle cell disease, spectrin deficiency, congenital spherocytic anemia, thalassemia, malaria, and Hodgkin’s disease). They may well be evolutionarily conserved, because they are present in the spleen of stressed teleosts. They occur in small numbers in the normal mammalian spleen. Barrier cells proliferate and show morphological signs associated with intense protein synthesis: large nucleoli, dense cytoplasm, and widened perinuclear cisternae continuous with endoplasmic reticulum, so branched and expanded that it imparts a lacy appearance to the cytoplasm.

Splenic barrier cells originate by activation of fibroblasts on the surface of trabeculae and the adventitial aspect of blood vessels; activation is signaled by increased cytoplasmic density, accompanied by increases in rough endoplasmic reticulum, as well as dilated mitochondria. Parallel changes occur in bone marrow, the barrier cells differentiating from the bone-lining layer covering trabeculae and myeloid diaphyseal bone. Barrier cells also originate from circulating precursors; circulating blood contains fibroblast stem cells (colony-forming unit, fibroblastoid), as determined in tissue culture assays. Barrier cells initially accumulate in the spleen, perivascularly, as dense, round cells with relatively short cell processes. Fusing with one another, they migrate from their initial perivasculare location, and, in many instances, adhere to existing extracellular matrix, and associate with established reticular cells. They move apart, remaining associated with the resident reticular meshwork, and attached to one another by extended cell processes. Barrier cells thereby augment the functions and structure of the basic reticular cell filtration beds.

Barrier cells enclose blood vessels, providing or enhancing an adventitial layer. They tightly surround single blood cells and
multicellular hematopoietic colonies, isolating and protecting them. Such barrier cell enclosures form a blood–tissue barrier in the spleen, in the precrisis phase of reticuloctye-prone plasmodia (as with Plasmodium berghei in murine malaria), preventing bloodborne parasites from parasitizing reticulocytes and their precursors. A remarkable splenic synchrony occurs at crisis. At the same time, the moment of crisis, barrier cell–cell associations are disrupted, relieving the isolation of the hematopoietic, notably erythroid, colonies. The colonies reach the precise point of maturity that permits their erythroid cells, no longer confined by barrier cells, to be released into the circulation, and the parasite (contained in parasitized erythrocytes), excluded precrisis from the splenic filtration beds by the intact barrier-cell barrier, enters these beds, readily crossing the now-disrupted barrier-cell barrier. The post-crisis filtration beds of the spleen are open to the circulation, in contrast to the precrisis spleen, in which they are shut off from the circulation by the intact barrier-cell barriers.

The precrisis spleen accordingly embodies a paradox: It is a large spleen exhibiting splenomegaly, yet it is not hypersplenic, because, with the spleen blood barrier intact, its level of clearance is reduced. It is hyposplenic, or “asplenic,” rather than, as would be more characteristic of a large spleen, hypersplenic. These changes are marked and evident in malaria. Yet, on close evaluation of other splenomegalies, such as those of sickle cell disease and thalassemia, they too display hypersplenism in the course of splenomegaly. It may well be, moreover, that the splenic fibrosis in chronic sickle cell disease is not caused, as has been inferred, by cumulative, successive small infarcts, but by the accumulation of barrier cells, which, with chronicity, become fibroblastic, resulting in the fibrotic splenic nubbin that had been the spleen. Examination of the spleen in murine malaria, and the spleen in human sickle cell anemia, moreover, reveals that fibrosis is not figured as a flame-shaped fibroblastic aggregate at the end of a splenic vessel, as would occur in infarction, but rather as a perivascular cuff, where barrier cells lay.

Barrier cells infiltrate existing circumferential matrix reticulum, and adhere to its marginal zone surface, thus transforming the circumferential reticulum into a more effective barrier surrounding and protecting the white pulp. This change may occur after an immune response is initiated in the white pulp, thereby causing that white pulp, already engaged in antibody production, to be refractory to further stimulation by antigen. In the marginal zone and the cords of red pulp of human and other sinusual spleens, where filtration beds are best-developed, barrier cells intercalate into these domains, and may help to regulate their cellular traffic. In contrast, in murine (nonsinusal) spleen, the matrix reticulum composing the filtration domains in red pulp and marginal zone is scanty and less well developed. Yet, in these spleens, as in the sinusual spleens, barrier cells are present as extensive, branched, syncytial arrays, but, with relatively little reticulum to infiltrate, barrier cells appear to be tethered to nonfibrillar matrix components, as well as to the adventitial reticular cells present on the abluminal surface of blood vessels. We believe that barrier cells augment the basal filtration activity of the filtration beds, and serve to regulate their traffic.

Barrier cells provide dynamic, diverse blood–spleen barriers, which, acting in coordination with macrophages and other stromal cells, regulate splenic filtration and its intrasplenic consequences, including blood flow, cell homing and migration, hematopoietic and immune responses, and the clearance of infectious organisms. Barrier cells trap circulating infectious organisms and monocytes on their cell surfaces, clearing them from the blood, providing a selective environment for monocyte differentiation into macrophages and subsequent phagocytosis of the microorganisms. Barrier cells enclosing hematopoietic colonies are positioned to confine factors controlling colony growth and differentiation. They may protect colonies from parasitism, e.g., as erythroblastic colonies in malaria. Activated barrier cells and their associated matrix molecules may effectively close off white pulp. An initial antigen stimulus is thereby met by a complete response, which confines the lymphokines, cytokines, and other regulatory substances, to the white pulp, and prevents secondarily derived antigen from dissipating immunological resources. Closing off the white pulp, in the presence of contagious cellular damage, would reduce autoimmune responses. As barrier cells close off the selected filtration domains, they constitute a shunt, permitting an efficient closed circulation between arterial terminals and veins. The spleen, unlike the marrow, lacks a cellular barrier between hematopoietic tissues and the blood. These specialized cells provide such barriers, thereby conferring on the spleen certain attributes of the marrow.

2.4. CONCLUSION

In a normal spleen, the level of filtration activity may well be regulated by the degree of contraction of the filtration beds, the capsule and trabeculae; the placement of the terminating arterial vessels; and the capacity of the sheet-like processes of the reticular cells to establish tubular connections between arterial and venous vessels. The normal spleen does not appear to depend heavily upon its barrier cells, although they are present in the circumferential reticulum of white pulp, and, in sinusual spleens, they may also be found in the marginal zone and red pulp. In pathological spleens in which the locules of the filtration bed come tightly crowded, as a result of heightened filtration, the spleen becomes firm and enlarged; consequently, the mechanisms regulating blood flow under normal circumstances cannot function, since the spleen is distended and becomes incapable of contraction. The syncytiat membrane and meshworks produced by the fusion of barrier cells become the means by which the character of the blood flow is determined. The character of blood flow, in turn, determines whether or not the filtration beds are perfused, whether the circulation is open or closed, and whether or not the blood is cleared.

REFERENCES

The Complete Spleen
Structure, Function, and Clinical Disorders
Bowdler, A.J. (Ed.)
2002, XVIII, 331 p. 146 illus., Hardcover
A product of Humana Press