Contents

1 Introduction .. 1
 1.1 Loomings .. 1
 1.1.1 The Special Nature of Mathematical Reasoning Within Human Reason in General 5
 1.2 Proof Verifiers .. 6
 1.3 Informal Introduction to the Formalism in which We Will Work 7
 1.3.1 (A) Immediate Deduction 7
 1.3.2 (B) Proof by ‘Supposition’ and ‘Discharge’ (‘Natural Deduction’) 8
 1.3.3 (C) Use of Definitions 8
 1.4 More About Our Formalism 10
 1.4.1 Propositional and Predicate Calculus 10
 1.4.2 Set Theory: The Third Main Ingredient of Our Formalism .. 13
 1.5 An Informal Overview of the Sequence of Formal Set-Theoretic Proofs to Be Given Later 25
 1.5.1 Basic Elementary Results 25
 1.5.2 Ordinals .. 25
 1.5.3 Well Ordering: The Principle of Transfinite Enumerability 27
 1.5.4 Cardinal Numbers .. 29
 1.5.5 Survey of the Major Sequence of Definitions and Proofs Considered in This Text 32

2 Propositional- and Predicate-Calculus Preliminaries 37
 2.1 The Propositional Calculus 37
 2.2 The Predicate Calculus 44
 2.2.1 Proof Rules of the Predicate Calculus 51
 2.2.2 The Gödel Completeness Theorem 52
 2.2.3 Working with Universally Valid Predicate Formulae. A Few Simple Examples of Predicate Proof 54
 2.2.4 The Prenex Normal Form of Predicate Formulae 60
 2.2.5 The Deduction Theorem 60
2.2.6 Definitions in Predicate Calculus; the Notion of
‘Conservative Extension’ ... 62
2.2.7 Proof of the Gödel Completeness Theorem 65
2.3 Predicate Calculus with Equality as a Built-in 75
2.4 Set Theory as an Axiomatic Extension of Predicate Calculus . . . 77
2.4.1 Zermelo–Fraenkel Theory with the Axiom of Choice ... 77
2.4.2 Concerning the Consistency of ZFC and Various
Interesting Extensions of It 79
References ... 91
3 A Survey of Inference Mechanisms 93
3.1 The Davis–Putnam Propositional Decision Algorithm 93
3.1.1 Horn Formulae and Sets of Formulae 95
3.1.2 Reducing Collections of Propositional Formulae to
Collections of Standardized Disjunctions 96
3.2 Elementary Boolean Theory of Sets 97
3.2.1 Elementary Boolean Theory of Sets, Plus the Predicates
‘Finite’ and ‘Countable’ ... 100
3.2.2 Elementary Boolean Operators on Sets, with the
Cardinality Operator and Additive Arithmetic on Integers . 102
3.2.3 Quantified Predicate Formulae Involving Predicates of
One Argument Only .. 104
3.3 MLSS: Multilevel Syllogistic with Singletons 109
3.4 MLSS Plus the Predicates ‘Finite’ and ‘Countable’ 113
3.5 The Tableau Method .. 115
3.6 Elementary Booleans Plus Map Primitives 120
3.7 Various Commonly Occurring Decidable Extensions of MLSS 122
3.7.1 Extension Conditions in the Other Cases Listed Above 126
3.7.2 The Case of Mutually Inverse Functions 129
3.8 More Examples of Decidable Sublanguages 131
3.8.1 Presburger’s Decidable Quantified Language of Additive
Arithmetic .. 131
3.8.2 A Decidable Quantified Theory Involving Ordinals 134
3.8.3 A Language of Additive Infinite Cardinal Arithmetic 148
3.8.4 Behmann’s Quantified Language of Elementary
Set-Theoretic Formulae .. 151
3.9 A Decision Algorithm for the Theory of Totally Ordered Sets ... 157
3.10 A Decision Algorithm for Ordered Abelian Groups 159
3.11 A Fragment of Analysis: Theory of Reals and Single-Valued
Continuous Functions with Predicates ‘Monotone’, ‘Convex’,
‘Concave’, Real Addition, and Comparison 165
3.11.1 Syntax of RMCF^+ ... 165
3.11.2 Semantics of RMCF^+ 166
3.11.3 Preparing a Set of RMCF^+ Statements for Satisfiability
Testing .. 169
3.12 The Resolution Method for Pure Predicate-Calculus Proving 177
3.12.1 Resolution in the Propositional Calculus 179
3.12.2 Resolution and Syntactic Unification in the Predicate Calculus .. 180
3.13 Universally Quantified Predicate Sentences Involving Function Symbols of One Argument Only 190
3.14 The Knuth–Bendix Equational Method ... 193
 3.14.1 Overview of the Method .. 193
 3.14.2 Details ... 195
 3.14.3 Testing Completeness by Superposition of Reductions:
 The Knuth–Bendix Completion Process 199
 3.14.4 More Details .. 200
 3.14.5 Examples of the Knuth–Bendix Procedure 200
References ... 202

4 More on the Structure of the Verifier System 205
 4.1 Introduction to the General Syntax and Overall Structure of Proofs 205
 4.1.1 The Syntax of Proofs .. 205
 4.1.2 The ELEM Primitive and ‘Blobbing’ 208
 4.1.3 The Suppose_not, QED, Suppose, Discharge Primitives 210
 4.1.4 THEORY Application .. 211
 4.1.5 Context of an Inference Step .. 213
 4.2 The Syntax and Semantics of Definitions 215
 4.3 Other Techniques Used in the Verifier as Implemented 218
 4.3.1 Supplementary Proof Mechanisms for the ELEM Rule 218
 4.3.2 Limited Predicate Proof ... 219
 4.3.3 Proof by Equality .. 224
 4.3.4 Proof by Monotonicity .. 224
 4.3.5 Algebraic Deduction .. 227
 4.3.6 Proof by Closure .. 229
 4.3.7 The Behind-the-Scenes Activity of Proof by Structure 230
 4.3.8 ‘Blobbing’ More General Formulae Down to a Specified
 Decidable or Semi-decidable Sublanguage of Set Theory 235
 4.3.9 Accelerated Instantiation of Quantifiers and Set Formers ... 236
 4.3.10 Computation with Hereditarily Finite Sets 238
 4.4 Dividing Long Proof Verifications into Multiple Separate ‘Sessions’ 253
References ... 255

5 A Closer Examination of the Sequence of Definitions and Theorems
Presented in this Book .. 257
 5.1 Basic Operations of Set Theory and the Theory of Ordinals 258
 5.1.1 Pairs, Set Formers, and Maps 258
 5.1.2 Transfinite Induction .. 260
 5.1.3 Ordinals ... 260
 5.1.4 The Ordinal Enumerability Theorem 261
 5.2 Elementary Laws on Map Constructs 262
 5.3 Cardinality of a Set; Cardinal Numbers 268
5.3.1 Finiteness .. 270
5.4 The Set of All Integers, Basic Arithmetic of Integers and Cardinals 273
5.5 The Cardinal Product Theorem 279
5.6 The Signed Integers ... 281
5.7 Induction Principles for Ordinals 285
 5.7.1 Mathematical Induction for Integers 287
5.8 Equivalence Relationships and Classes; the General Summation Operator; Recursion .. 287
5.9 Formal Fractions and Rational Numbers 289
5.10 Real Numbers .. 295
5.11 Complex Numbers .. 300
5.12 Functions of Real and Complex Variables 302
References .. 311

6 Undecidability and Unsolvability .. 313
 6.1 Chaitin’s Theorem ... 313
 6.1.1 Undecidability Results Derivable from Chaitin’s Theorem 315
6.2 The Two Gödel Theorems ... 319
 6.2.1 Programming Considerations 320
 6.2.2 Programming and Proof; ‘Mirroring’ Programmable Set-Theoretic Functions .. 323
 6.2.3 Additional Comments on the Legitimacy of Recursive Definitions .. 328
 6.2.4 Properties of Integers .. 329
 6.2.5 A Final Remark on Proof and Computation 336
 6.2.6 A Technical Adjustment .. 336
 6.2.7 The ‘Provability’ Predicate Pr(s) 337
 6.2.8 Proof Visibility Lemma .. 339
 6.2.9 Gödel’s Trick Sentence .. 343
 6.2.10 Rosser’s Variant of Gödel’s Trick Sentence 344
 6.2.11 Proof of Rosser’s Variant of Gödel’s First Theorem 345
 6.2.12 Proof of Gödel’s Second Theorem 346
6.3 Axioms of Reflection ... 346
 6.3.1 Statement of the Axioms of Reflection 359
6.4 A Digression Concerning Foundations 367
References .. 371

7 A Self-contained Beginning for Ref’s Main Proof Scenario 373
 7.1 Axioms of Set Theory .. 373
 7.2 Pairs and Maps .. 374
 7.3 From Reachability to Transfinite Induction 378
 7.3.1 Reachability in a Big Graph 378
 7.3.2 Full Sets and Ordinals ... 386
 7.3.3 The Transitive Closure Operation 390
 7.3.4 A Basic Form of the Principle of Transfinite Induction 392
 7.3.5 Some Basic Facts on Ordinal Numbers 393
Computational Logic and Set Theory
Applying Formalized Logic to Analysis
Schwartz, J.T.; Cantone, D.; Omodeo, E.G.
2011, XVII, 416 p., Hardcover