Contents

1 Introduction and Basic Results ... 1
 1.1 Motivations and Brief Historical Notes 1
 1.2 Notation and Preliminaries ... 5
 1.2.1 Function Spaces .. 5
 1.2.2 Embeddings ... 7
 1.2.3 Elliptic Equations ... 8
 1.2.4 Frequently Used Results 9
 1.3 A Review of Differential Calculus for Real Functionals 11
 1.3.1 Examples in Abstract Spaces 15
 1.3.2 Examples in Concrete Spaces 16
 1.4 Weak Solutions and Critical Points 22
 1.5 Convex Functionals ... 25
 1.6 A Few Examples .. 28
 1.7 Some Spectral Properties of Elliptic Operators 31
 1.8 Exercises .. 35
 1.9 Bibliographical Notes ... 37

2 Minimization Techniques: Compact Problems 39
 2.1 Coercive Problems ... 39
 2.2 A min–max Theorem ... 46
 2.3 Superlinear Problems and Constrained Minimization 55
 2.3.1 Minimization on Spheres 56
 2.3.2 Minimization on the Nehari Manifold 59
 2.4 A Perturbed Problem ... 63
 2.5 Nonhomogeneous Nonlinearities 74
 2.6 The p-Laplacian .. 86
 2.6.1 Basic Theory .. 87
 2.6.2 Two Applications .. 91
 2.7 Exercises .. 93
 2.8 Bibliographical Notes ... 95
3 Minimization Techniques: Lack of Compactness

3.1 A Radial Problem in \mathbb{R}^N .. 97
3.2 A Problem with Unbounded Potential ... 104
3.3 A Serious Loss of Compactness ... 107
3.4 Problems with Critical Exponent ... 119
 3.4.1 The Prototype Problem ... 120
 3.4.2 A Problem with a Radial Coefficient 129
 3.4.3 A Nonexistence Result ... 136
3.5 Exercises ... 140
3.6 Bibliographical Notes ... 143

4 Introduction to Minimax Methods ... 145

4.1 Deformations ... 146
4.2 The Minimax Principle ... 153
4.3 Two Classical Theorems .. 155
4.4 Some Applications .. 160
 4.4.1 Superlinear Problems ... 160
 4.4.2 Asymptotically Linear Problems ... 167
 4.4.3 A Problem at Resonance ... 171
4.5 Problems with a Parameter .. 178
4.6 Exercises ... 186
4.7 Bibliographical Notes ... 188

Index of the Main Assumptions ... 191

References .. 193

Index ... 197
Semilinear Elliptic Equations for Beginners
Existence Results via the Variational Approach
Badiale, M.; Serra, E.
2011, X, 199 p., Softcover