Chapter 2
The Geometry of the Drinfeld Curve

Let Y be the Drinfeld curve

$$Y = \{(x, y) \in A^2(\mathbb{F}) \mid xy^q - yx^q = 1\}.$$

It is straightforward to verify that:

- G acts linearly on $A^2(\mathbb{F})$ (via $g \cdot (x, y) = (ax + by, cx + dy)$ if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$) and stabilises Y;
- μ_{q+1} acts on $A^2(\mathbb{F})$ by homotheties (via $\xi \cdot (x, y) = (\xi x, \xi y)$ if $\xi \in \mu_{q+1}$) and stabilises Y;
- the Frobenius endomorphism $F: A^2(\mathbb{F}) \to A^2(\mathbb{F})$, $(x, y) \mapsto (x^q, y^q)$ stabilises Y.

Moreover, if $g \in G$ and $\xi \in \mu_{q+1}$, then, as endomorphisms of $A^2(\mathbb{F})$ (or Y), we have

$$g \circ \xi = \xi \circ g,$$
$$g \circ F = F \circ g,$$
$$F \circ \xi = \xi^{-1} \circ F.$$

We can therefore form the monoid

$$G \times (\mu_{q+1} \rtimes \langle F \rangle_{\text{mon}})$$

which acts on $A^2(\mathbb{F})$ and stabilises Y.

The purpose of this chapter is to assemble the geometric properties of Y and the action of $G \times (\mu_{q+1} \rtimes \langle F \rangle_{\text{mon}})$ which allows us to calculate its ℓ-adic cohomology (as a module for the monoid $G \times (\mu_{q+1} \rtimes \langle F \rangle_{\text{mon}})$). A large part of this chapter is dedicated to the construction of quotients of Y by the actions of the finite groups G, U and μ_{q+1}.
2.1. Elementary Properties

The following proposition is (almost) immediate.

Proposition 2.1.1. The curve Y is affine, smooth and irreducible.

Proof. Y is affine because it is a closed subspace of the affine space $\mathbb{A}^2(\mathbb{F})$. It is irreducible because the polynomial $XY^q - YX^q - 1$ in $\mathbb{F}[X, Y]$ is irreducible (see Exercise 2.1). It is smooth because the differential of this polynomial is given by the 1×2 matrix $(Y^q - X^q)$, which is zero only at $(0, 0) \not\in Y$. \square

Proposition 2.1.2. The group G acts freely on Y.

Proof. Let $g \in G$ and $(x, y) \in Y$ be such that $g \cdot (x, y) = (x, y)$. It follows that 1 is an eigenvalue of g and, after conjugating g by an element of G, we may assume that there exists an $a \in \mathbb{F}_q$ such that

$$g = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}.$$

Then $x + ay = x$ and, as $y \neq 0$ (since $(x, y) \in Y$), we conclude that $a = 0$. \square

The next proposition is clear.

Proposition 2.1.3. The group μ_{q+1} acts freely on $\mathbb{A}^2(\mathbb{F}) \setminus \{(0, 0)\}$ and therefore also on Y.

Note however, that the group $G \times \mu_{q+1}$ does not act freely on Y: the pair $(-I_2, -1)$ acts as the identity. (Even the quotient $(G \times \mu_{q+1})/\langle(-I_2, -1)\rangle$ does not act freely, see Exercise 2.3.)

2.2. Interesting Quotients

We will now describe the quotients of Y by the finite groups G, U and μ_{q+1}. In order to construct them we will use the following proposition, a proof of which can be found in [Bor, Proposition 6.6]. (Note that the proposition is far from optimal, but will be sufficient for our needs.)

Proposition 2.2.1. Let V and W be two smooth and irreducible varieties, $\varphi : V \to W$ a morphism of varieties, and Γ a finite group acting on V. Suppose that the following three properties are satisfied:

1. φ is surjective;
2. $\varphi(\nu) = \varphi(\nu')$ if and only if ν and ν' are in the same Γ-orbit;
3. There exists $\nu_0 \in V$ such that the differential of φ at ν_0 is surjective.

Then the morphism $\bar{\varphi} : V/\Gamma \to W$ induced by φ is an isomorphism of varieties.
2.2.1. Quotient by G

The map

$$\gamma: \ Y \longrightarrow \mathbb{A}^1(\mathbb{F})$$

$$(x, y) \longmapsto xy^{q^2} - yx^{q^2}$$

is a morphism of varieties. It is $\mu_{q+1} \rtimes \langle F \rangle_{\text{mon}}$-equivariant (for the action of μ_{q+1} on $\mathbb{A}^1(\mathbb{F})$ given by $\xi \cdot z = \xi^2 z$ and the action of F given by $z \mapsto z^q$). An elementary calculation shows that γ is constant on G-orbits. Even better, if we denote by $\bar{\gamma}: \ Y / G \rightarrow \mathbb{A}^1(\mathbb{F})$ the morphism of varieties obtained by passing to the quotient, we have the following.

Theorem 2.2.2. The morphism of varieties $\bar{\gamma}: \ Y / G \rightarrow \mathbb{A}^1(\mathbb{F})$ is a $\mu_{q+1} \rtimes \langle F \rangle_{\text{mon}}$-equivariant isomorphism.

Proof. The $\mu_{q+1} \rtimes \langle F \rangle_{\text{mon}}$-equivariance is evident. In order to show that $\bar{\gamma}$ is an isomorphism we must verify points (1), (2) and (3) of Proposition 2.2.1.

Choose $a \in \mathbb{F}$. To show (1) and (2), it is sufficient to show that $|\gamma^{-1}(a)| = |G|$ (as G acts freely on Y by Proposition 2.1.2). After changing variables $(z, t) = (x, y / x)$, we have a bijection $\gamma^{-1}(a) \sim \mathcal{E}_a$, where

$$\mathcal{E}_a = \{(z, t) \in \mathbb{F}^\times \times \mathbb{F}^\times \mid t^q - t = \frac{1}{z^{q+1}} \text{ and } t^{q^2} - t = \frac{a}{z^{q^2+1}}\}.$$

As $t^{q^2} - t = (t^q - t)^q + (t^q - t)$, we obtain

$$\mathcal{E}_a = \{(z, t) \in \mathbb{F}^\times \times \mathbb{F}^\times \mid t^q - t = \frac{1}{z^{q+1}} \text{ and } \frac{1}{z^{q+1}} + \frac{1}{z^{q^2+q}} = \frac{a}{z^{q^2+1}}\}.$$

Or equivalently

$$\mathcal{E}_a = \{(z, t) \in \mathbb{F}^\times \times \mathbb{F}^\times \mid z^{q^2-1} - az^{q-1} + 1 = 0 \text{ and } t^q - t = \frac{1}{z^{q+1}}\}.$$

The polynomial $z^{q^2-1} - az^{q-1} + 1$ is coprime to its derivative, and therefore has $q^2 - 1$ distinct non-zero roots. For each of these roots, there are q non-zero solutions t to the equation $t^q - t = \frac{1}{z^{q+1}}$. Therefore

$$|\gamma^{-1}(a)| = |\mathcal{E}_a| = (q^2 - 1)q = |G|,$$

as expected.

We now turn to (3). Let $v = (x_0, y_0) \in Y$. The tangent space $\mathcal{T}_v(Y)$ to Y at v has equation $y_0^q x - x_0^q y = 0$ and the differential $d_v \gamma: \mathcal{T}_v(Y) \rightarrow \mathbb{F} = \mathcal{T}_{\gamma(v)}(\mathbb{A}^1(\mathbb{F}))$ is given by

$$d_v \gamma(x, y) = y_0^{q^2} x - x_0^{q^2} y.$$
Therefore, if \((x, y) \in \text{Ker} \ d_v \gamma\), then
\[
y_0^q x - x_0^q y = 0 \quad \text{and} \quad y_0^q x - x_0^q y = 0.
\]
The determinant of this system is
\[
- y_0^q x_0^q + x_0^q y_0^q = \left(x_0 y_0^q - y_0 x_0^q \right)^q = 1,
\]
therefore \(\text{Ker} \ d_v \gamma = 0\).

2.2.2. Quotient by \(U\)

The morphism
\[
\nu : \mathbf{Y} \longrightarrow \mathbf{A}^1(\mathbb{F}) \setminus \{0\}, \quad (x, y) \longmapsto y
\]
is well-defined and is a morphism of varieties. It is \(\mu_{q+1} \rtimes \langle F \rangle\)_mon_equivariant (for the action of \(\mu_{q+1}\) on \(\mathbf{A}^1(\mathbb{F}) \setminus \{0\}\) given by \(\xi \cdot z = \xi z\) and the action of \(F\) given by \(z \mapsto z^q\)). An elementary calculation show that \(\nu\) is constant on \(U\)-orbits. Even better, if we denote by \(\tilde{\nu} : \mathbf{Y} / U \to \mathbf{A}^1(\mathbb{F}) \setminus \{0\}\) the morphism of varieties induced by passing to the quotient, we have the following.

Theorem 2.2.3. The morphism of varieties \(\tilde{\nu} : \mathbf{Y} / U \to \mathbf{A}^1(\mathbb{F}) \setminus \{0\}\) is a \(\mu_{q+1} \rtimes \langle F \rangle\)_mon_equivariant isomorphism.

Proof. The \(\mu_{q+1} \rtimes \langle F \rangle\)_mon_equivariance is evident. To show that \(\tilde{\nu}\) is an isomorphism, we verify points (1), (2) and (3) of Proposition 2.2.1.

The surjectivity of \(\nu\) is clear. We also have
\[
\nu(x, y) = \nu(x', y') \iff \exists \ u \in U, \ (x', y') = u \cdot (x, y).
\]
Indeed, if \((x, y) \in \mathbf{Y}\) and \((x', y') \in \mathbf{Y}\) are such that \(y = y'\), then
\[
\left(\frac{x}{y} \right)^q - \frac{x}{y} = \left(\frac{x'}{y'} \right)^q - \frac{x'}{y'},
\]
which shows that \(\frac{x' - x}{y} \in \mathbb{F}_q\). Now, if we set \(a = \frac{x' - x}{y}\), then
\[
\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix}.
\]
This shows (2). Point (3) is immediate. \(\square\)
2.2.3. Quotient by μ_{q+1}

The morphism

$$\pi: \ Y \longrightarrow \mathbb{P}^1(\mathbb{F}) \setminus \mathbb{P}^1(\mathbb{F}_q)$$

$$(x,y) \longmapsto [x:y]$$

is well-defined and is $G \times \langle F \rangle_{\text{mon}}$-equivariant morphism of varieties (for the action of G induced by the natural action on $\mathbb{P}^1(\mathbb{F})$ and the action of F given by $[x:y] \mapsto [x^q:y^q]$). An elementary calculation show that π is constant on μ_{q+1}-orbits. Even better, if we denote by $\bar{\pi}: Y / \mu_{q+1} \rightarrow \mathbb{P}^1(\mathbb{F}) \setminus \mathbb{P}^1(\mathbb{F}_q)$ the morphism of varieties induced by passage to the quotient, we have the following.

Theorem 2.2.4. The morphism of varieties $\bar{\pi}: Y / \mu_{q+1} \rightarrow \mathbb{P}^1(\mathbb{F}) \setminus \mathbb{P}^1(\mathbb{F}_q)$ is a $G \times \langle F \rangle_{\text{mon}}$-equivariant isomorphism.

Proof. The $G \times \langle F \rangle_{\text{mon}}$-equivariance is evident. To show that $\bar{\pi}$ is an isomorphism, we should verify points (1), (2) and (3) of Proposition 2.2.1, which is straightforward. \Box

2.3. Fixed Points under certain Frobenius Endomorphisms

In order to get the most out of the Lefschetz fixed-point theorem (see Theorem A.2.7(a) in Appendix A) we will need the following two results. Firstly, note that, if $\xi \in \mu_{q+1}$, we have

$$(2.3.1) \quad Y^\xi F = \emptyset.$$

Indeed, $(Y/\mu_{q+1})^F = \emptyset$ by Theorem 2.2.4. On the other hand, we have the following.

Theorem 2.3.2. Let $\xi \in \mu_{q+1}$. Then

$$|Y^{\xi F^2}| = \begin{cases} 0 & \text{if } \xi \neq -1, \\ q^3 - q & \text{if } \xi = -1. \end{cases}$$

Proof. Let $(x,y) \in Y^{\xi F^2}$. We then have

$$x = \xi x^q, \quad y = \xi y^q$$

and

$$xy^q - yx^q = 1.$$

As a consequence,

$$1 = (xy^q - yx^q)^q = x^q y^q - y^q x^q = \xi (x^q y - xy^q) = -\xi.$$

This shows that, if $\xi \neq -1$, then $Y^{\xi F^2} = \emptyset$.
Therefore suppose that $\xi = -1$. We are looking for the number of solutions to the system

$$\begin{cases} x = -xq^2 & (1) \\ xy^q - yx^q = 1 & (2) \\ y = -yq^2 & (3) \end{cases}$$

However, if the pair (x, y) satisfies (1) and (2), then it also satisfies (3). Indeed, if (x, y) satisfies (1) and (2), then $x \neq 0$, $y = \frac{1 + yx^q}{x}$ and therefore

$$yq^2 = \left(\frac{1 + yx^q}{x}\right)^q = \frac{1 + y^q x^q}{x^q} = \frac{1 - xy^q}{x^q} = -\frac{yx^q}{x^q} = -y.$$

It follows that it is sufficient to find the number of solutions to the system given by equations (1) and (2). Now, x being non-zero, there are $q^2 - 1$ possibilities for x to be a solution of (1). As soon as we have fixed x, there are q solutions to equation (2) (viewed as an equation in y). Indeed, as an equation in y, $xy^q - yx^q - 1$ has derivative $-x^q \neq 0$, and so this polynomial does not admit multiple roots. This gives therefore $(q^2 - 1)q$ solutions to equations (1) and (2), and the theorem follows. □

Remark – As G acts freely on Y, the set $Y - F^2$ consists of a single G-orbit. □

2.4. Compactification

We will denote by $[x; y; z]$ homogeneous coordinates on the projective space $P^2(\mathbb{F})$. We view $A^2(\mathbb{F})$ as the open subset of $P^2(\mathbb{F})$ defined by

$$A^2(\mathbb{F}) \simeq \{ [x; y; z] \in P^2(\mathbb{F}) \mid z \neq 0 \}.$$

We identify $P^2(\mathbb{F}) \setminus A^2(\mathbb{F})$ with $P^1(\mathbb{F})$ (using the canonical isomorphism $[x; y] \mapsto [x; y; 0]$). The action of $G \times (\mu_{q+1} \rtimes \langle F \rangle)$ on $A^2(\mathbb{F})$ extends uniquely to $P^2(\mathbb{F})$: if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\xi \in \mu_{q+1}$ and $[x; y; z] \in P^2(\mathbb{F})$, then

$$g \cdot [x; y; z] = [ax + by; cx + dy; z],$$

$$\xi \cdot [x; y; z] = [\xi x; \xi y; z]$$

and

$$F[x; y; z] = [x^q; y^q; z^q].$$

Now let \overline{Y} be the projective curve defined by

$$\overline{Y} = \{ [x; y; z] \in P^2(\mathbb{F}) \mid xy^q - yx^q = z^{q+1} \}.$$
The morphism
\[
Y \longrightarrow \mathcal{Y}
\]
\[
(x, y) \longmapsto [x; y; 1]
\]
is an open immersion and allows us to identify \(Y\) with \(\mathcal{Y} \cap A^2(F)\).

Proposition 2.4.1. The closed subvariety \(\mathcal{Y}\) of \(P^2(F)\) is the closure of \(Y\) in \(P^2(F)\). It is smooth and stable under the action of \(G \times (\mu_{q+1} \rtimes \langle F \rangle)\). Moreover,
\[\mathcal{Y} \setminus Y \simeq P^1(F_q),\]
with this isomorphism given by \([x; y] \in P^1(F_q) \mapsto [x; y; 0]\).

Proof. The only point needing a little work is the smoothness. The points of \(Y\) are smooth by Proposition 2.1.1. As \(G\) acts transitively on \(\mathcal{Y} \setminus Y = P^1(F_q) \simeq G/B\) (as a \(G\)-set), it is enough to show that \([1; 0; 0]\) is a smooth point of \(\mathcal{Y}\). For this, let us consider the open subvariety defined by \(x \neq 0\). In this open set (again isomorphic to \(A^2(F)\), this time via the morphism \((y, z) \mapsto [1; y; z]\)) \(\mathcal{Y}\) is defined by the equation \(y - y^q - z^{q+1} = 0\) and the differential at \((0, 0)\) of this polynomial is the \(1 \times 2\) matrix
\[
\begin{pmatrix}
1 & 0
\end{pmatrix},
\]
which is non-zero. \(\Box\)

We finish with a study of the quotient of \(\mathcal{Y}\) by \(\mu_{q+1}\). Consider the morphism
\[
\pi_0 : \mathcal{Y} \longrightarrow P^1(F)
\]
\[
[x; y; z] \longmapsto [x; y].
\]
It is well-defined, \(G\)-equivariant, and surjective. Moreover, it is constant on \(\mu_{q+1}\)-orbits and therefore induces, after passing to the quotient, a morphism of varieties \(\bar{\pi}_0 : \mathcal{Y}/\mu_{q+1} \rightarrow P^1(F)\).

Theorem 2.4.2. The morphism of varieties \(\bar{\pi}_0 : \mathcal{Y}/\mu_{q+1} \rightarrow P^1(F)\) is a \(G \times \langle F \rangle\) mon-equivariant isomorphism.

Proof. We omit the proof, as it follows the same arguments as those used in the proof of Theorem 2.2.4. \(\Box\)

2.5. Curiosities*

Independent of representation theory, the Drinfeld curve has interesting geometric properties which we discuss briefly here: it has a “large” automorphism group and gives a solution to a particular case of the Abhyankar’s Conjecture [Abh] about unramified coverings of the affine line in positive characteristic.
2.5.1. Hurwitz Formula, Automorphisms*

The group μ_{q+1} acts trivially on $\overline{Y} \setminus Y = \mathbb{P}^1(F_q)$. Also, as μ_{q+1} is of order prime to p, the morphism π_0 is tamely ramified: it is only ramified at the points $a \in \mathbb{P}^1(F_q)$ and ramification index at a is $e_a = q + 1$. If we denote by $g(Y)$ the genus of Y, then

$$(2.5.1) \quad g(Y) = \frac{q(q-1)}{2}$$

as Y is a smooth plane curve of degree $q + 1$. Note also that π_0 is a morphism of degree $\deg \pi_0 = q + 1$. We can therefore verify the Hurwitz formula [Har, Chapter IV, Corollary 2.4]

$$2g(\overline{Y}) - 2 = (\deg \pi_0)(2 \cdot g(\mathbb{P}^1(F)) - 2) + \sum_{a \in \mathbb{P}^1(F_q)} (e_a - 1),$$

as $g(\mathbb{P}^1(F)) = 0$.

We will now extend the group $G \times \mu_{q+1}$ to a bigger group \mathcal{G} still acting on Y (or \overline{Y}). Set

$$\mathcal{G} = \{ (g, \xi) \in \text{GL}_2(F_q) \times F_q^\times \mid \det(g) = \xi^{q+1} \}.$$

It is then straightforward to verify that,

$$(2.5.2) \quad \text{if } (g, \xi) \in \mathcal{G} \text{ and } (x, y) \in Y, \text{ then } g \cdot (\xi x, \xi y) \in Y.$$

This defines for us an action of \mathcal{G} on Y which extends naturally to an action on \overline{Y}. Set

$$\mathcal{D} = \begin{cases} \langle (-l_2, -1) \rangle & \text{if } q \equiv 3 \pmod{4}, \\ \langle (\sqrt{-1} l_2, -\sqrt{-1}) \rangle & \text{if } q \equiv 1 \pmod{4}. \end{cases}$$

Then \mathcal{D} is a central subgroup of \mathcal{G} contained in the kernel of the action on Y (and on \overline{Y}). Even better, we have the following.

Lemma 2.5.3. The group \mathcal{G}/\mathcal{D} acts faithfully on Y (and \overline{Y}).

Proof. Let (g, ξ) be an element of \mathcal{G} which acts trivially on Y. Then (g, ξ) acts trivially on \overline{Y} (as Y is dense in \overline{Y}) and, after passing to the quotient by $\{1\} \times \mu_{q+1}$ (which is a central subgroup of \mathcal{G}), we conclude that g acts trivially on on $\mathbb{P}^1(F)$ (by Theorem 2.4.2). Therefore g is a homothety: $g = \lambda l_2$, with $\lambda \in F_q^\times$.

Now, if $(x, y) \in Y$, we have $(g, \xi) \cdot (x, y) = (x, y)$, that is $\lambda \xi = 1$. Therefore $\xi = \lambda^{-1}$. On the other hand, $\det(g) = \xi^{q+1}$, which implies that $\lambda^2 = \xi^{q+1}$ or, in other words, $\lambda^{q+3} = 1$. As $\lambda^{q-1} = 1$, we collude that $\lambda^4 = 1$, which finishes the proof. \Box

Let $\Delta = \mathcal{D} \cap (G \times \mu_{q+1}) = \langle (-l_2, -1) \rangle$.

Corollary 2.5.4. The group \((G \times \mu_{q+1})/\Delta\) acts faithfully on \(Y\).

Denote by \(p_1 : \mathcal{G} \to \text{GL}_2(\mathbb{F}_q)\) and \(p_2 : \mathcal{G} \to \mathbb{F}_q^\times\) the canonical projections, and \(i_1 : \mu_{q+1} \to \mathcal{G}, \xi \mapsto (l_2, \xi)\) and \(i_2 : \mathcal{G} \to \mathcal{G}, g \mapsto (g, 1)\). The group \(G \times \mu_{q+1}\) is contained in \(\mathcal{G}\) and we set \(d : \mathcal{G} \to \mathbb{F}_q^\times, (g, \xi) \mapsto \det(g)\). We have a commutative diagram

\[
\begin{array}{ccc}
1 & \mu_{q+1} & 1 \\
\downarrow i_2 & \downarrow i_2 & \downarrow p_2 \\
1 & G \times \mu_{q+1} & \mathcal{G} \\
\downarrow i_1 & \downarrow d & \downarrow p_1 \\
1 & G & \text{GL}_2(\mathbb{F}_q) \\
\end{array}
\]

in which all straight lines of the form \(1 \to \mathcal{G} \to \mathcal{G} \to \mathcal{G} \to 1\) are exact sequences (which follows essentially from the surjectivity of \(N_2\)). In particular,

\[(2.5.5) \quad |\mathcal{G}| = q(q^2 - 1)^2.\]

It follows from Lemma 2.5.3 that

\[|\text{Aut}\mathcal{Y}| \geq \begin{cases}
\frac{q(q^2 - 1)^2}{2} & \text{if } q \equiv 3 \mod 4, \\
\frac{q(q^2 - 1)^2}{4} & \text{if } q \equiv 1 \mod 4.
\end{cases}\]

In particular, as soon as \(q \geq 7\), we have, by 2.5.1,

\[|\text{Aut}\mathcal{Y}| > 84(g(\mathcal{Y}) - 1) = 42(q - 2)(q + 1).\]

This illustrates the fact that the “Hurwitz bound” [Har, Chapter IV, Exercise 2.5] is not valid in positive characteristic.
2.5.2. Abhyankar’s Conjecture (Raynaud’s Theorem)*

It is not too difficult to show that if a finite group \(\Gamma \) is the Galois group of an unramified covering of the affine line \(\mathbb{A}^1(\mathbb{F}) \), then \(\Gamma \) is generated by its Sylow \(p \)-subgroups. The other implication was conjectured by Abhyankar and shown by Raynaud in a very difficult work [Ray].

Raynaud’s theorem (Abhyankar’s conjecture). A finite group \(\Gamma \) is the Galois group of an unramified Galois covering of the affine line \(\mathbb{A}^1(\mathbb{F}) \) if and only if it is generated by its Sylow \(p \)-subgroups.

Example – The morphism \(\mathbb{A}^1(\mathbb{F}) \to \mathbb{A}^1(\mathbb{F}), x \mapsto x^q - x \) is an unramified Galois covering of \(\mathbb{A}^1(\mathbb{F}) \) with Galois group \(\mathbb{F}^+ \).

By Proposition 1.4.1 and Lemma 1.2.2, the group \(G = \text{SL}_2(\mathbb{F}_q) \) is generated by its Sylow \(p \)-subgroups. By virtue of Raynaud’s theorem, \(G \) should be the Galois group of an unramified covering of \(\mathbb{A}^1(\mathbb{F}) \). In fact, in this particular case, the construction of such a covering is easy: the isomorphism \(\mathbb{Y}/G \cong \mathbb{A}^1(\mathbb{F}) \) and the fact that \(G \) acts freely on \(\mathbb{Y} \) (see Proposition 2.1.2) tells us that

\[
(2.5.6) \quad \mathbb{Y} \text{ is an unramified Galois covering of } \mathbb{A}^1(\mathbb{F}) \text{ with Galois group } \text{SL}_2(\mathbb{F}_q).
\]

Exercises

2.1. Show that the polynomial \(XY^q - YX^q - 1 \) in \(\mathbb{F}[X, Y] \) is irreducible. \(\text{Hint:} \) By performing the change of variables \((Z, T) = (X/Y, 1/Y) \) reduce the problem to showing that \(T^{q+1} - Z^q - Z \) in \(\mathbb{F}[Z, T] \) is irreducible. View this as a polynomial in \(T \) with coefficients \(\mathbb{F}[Z] \) and use Eisenstein’s criterion.

2.2. Let \(\mathbb{F}[X, Y] \) a the polynomial ring in two variables, which we identify with the algebra of polynomial functions on \(\mathbb{A}^2(\mathbb{F}) \). If \(g \in G, P \in \mathbb{F}[X, Y] \) and \(v \in \mathbb{A}^2(\mathbb{F}) \), we set \((g \cdot P)(v) = P(g^{-1} \cdot v) \).

(a) Show that this does indeed give an action of \(G \) via \(\mathbb{F} \)-algebra automorphisms.

(b) Show that \(XY^q - X^q \) and \(Y \) are algebraically independent and that \(\mathbb{F}[X, Y]^U = \mathbb{F}[XY^q - X^q, Y] \).

(c) Show that \(XY^q - YX^q \) divides \(XY^{q^2} - YX^{q^2} \).

(d) Show that \(D_1 = XY^q - YX^q \) and \(D_2 = \frac{XY^{q^2} - YX^{q^2}}{XY^q - YX^q} \) are algebraically independent.

(e) Show that \(\mathbb{F}[X, Y]^G = \mathbb{F}[D_1, D_2] \) (Dickson invariants).

(f) Use this to give another proof of Theorem 2.2.2.
2.3. Denote by Δ the subgroup of $G \times \mu_{q+1}$ generated by $(-I_2, -1)$. The purpose of this exercise is to show that $(G \times \mu_{q+1})/\Delta$ does not act freely on Y. To this end, choose $\xi \in \mu_{q+1} \setminus \{1, -1\}$ and let $v = (x, y) \in A^2(\mathbb{F})$ be an eigenvector of $d'(\xi)$ with eigenvalue ξ.

(a) Show that $xy^q - yx^q \neq 0$ (Hint: $xy^q - yx^q = x \prod_{a \in \mathbb{F}_q} (y + ax)$).

(b) Let $\kappa \in \mathbb{F}^\times$ be such that $\kappa^{-1-q} = xy^q - yx^q$. Show that $\kappa v \in Y$.

(c) Show that $(d'(\xi), \xi^{-1})$ stabilises $\kappa v \in Y$.

2.4. Let $Z = \{(x, y) \in A^2(\mathbb{F}) \mid x^{q+1} + y^{q+1} + 1 = 0\}$. We keep the notation F for the restriction to Z of the Frobenius endomorphism F of $A^2(\mathbb{F})$. The purpose of this exercise is to construct an isomorphism of Y and Z which commutes with F^4.

(a) Show that $Z^{F^2} \neq \emptyset$. Deduce that there does not exist an isomorphism of varieties $\tau: Y \sim \rightarrow Z$ such that $\tau \circ F^2 = F^2 \circ \tau$.

Let $z \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ and $d \in \mathbb{F}$ be such that $d^{q+1} = -\frac{1}{z^q - z}$.

(b) Show that $d \in \mathbb{F}_{q^4}$.

(c) Let $g = \begin{pmatrix} d^q z^q & dz \\ d^q & d \end{pmatrix}$. Show that $g \in \text{GL}_2(\mathbb{F}_{q^4})$ and that $g(Z) = Y$.

2.5. Denote by $\tau: Y/U \rightarrow Y/G$ the canonical projection. Set $\tau' = \bar{\gamma} \circ \tau \circ \bar{\upsilon}^{-1}: A^1(\mathbb{F}) \setminus \{0\} \rightarrow A^1(\mathbb{F})$, so that the diagram

$$
\begin{array}{ccc}
Y/U & \xrightarrow{\tau} & Y/G \\
\downarrow \bar{\upsilon} & & \downarrow \bar{\gamma} \\
A^1(\mathbb{F}) \setminus \{0\} & \xrightarrow{\tau'} & A^1(\mathbb{F})
\end{array}
$$

commutes. Show that $\tau'(y) = y^{-q}(y^{q^2} + y)$.

† The author is indebted to G. Lusztig to whom this exercise is due.
Representations of SL2(F_q)
Bonnafé, C.
2011, XXII, 186 p., Hardcover
ISBN: 978-0-85729-156-1