Contents

1 Modular Number Systems ... 1
 1.1 Beginnings ... 1
 1.2 Modular Numbers ... 2
 1.3 Modular Polynomials ... 8
 1.4 Interpolation Polynomials ... 14
*1.5 Generalized Taylor’s Theorem ... 17
 1.5.1 Approximation Theorems ... 18
 1.5.2 Hermite–Pade Approximation .. 20

2 Complex and Hyperbolic Numbers .. 23
 2.1 The Hyperbolic Numbers ... 24
 2.2 Hyperbolic Polar Form ... 26
 2.3 Inner and Outer Products .. 30
 2.4 Idempotent Basis .. 33
 2.5 The Cubic Equation .. 35
 2.6 Special Relativity and Lorentzian Geometry 37

3 Geometric Algebra ... 43
 3.1 Geometric Numbers of the Plane .. 45
 3.2 The Geometric Algebra \mathbb{G}_3 of Space 50
 3.3 Orthogonal Transformations .. 54
 3.4 Geometric Algebra of \mathbb{R}^n .. 57
 3.5 Vector Derivative in \mathbb{R}^n .. 63

4 Vector Spaces and Matrices ... 67
 4.1 Definitions .. 67
 4.2 Matrix Algebra ... 70
 4.3 Matrix Multiplication ... 73
 4.4 Examples of Matrix Multiplication 75
 4.5 Rules of Matrix Algebra ... 78
 4.6 The Matrices of \mathbb{G}_2 and \mathbb{G}_3 79
5 Outer Product and Determinants ... 85
 5.1 The Outer Product ... 85
 5.2 Applications to Matrices ... 92
6 Systems of Linear Equations .. 95
 6.1 Elementary Operations and Matrices 95
 6.2 Gauss–Jordan Elimination .. 100
 6.3 LU Decomposition .. 103
7 Linear Transformations on \mathbb{R}^n 107
 7.1 Definition of a Linear Transformation 107
 7.2 The Adjoint Transformation .. 113
8 Structure of a Linear Operator ... 117
 8.1 Rank of a Linear Operator 117
 8.2 Characteristic Polynomial ... 120
 8.3 Minimal Polynomial of f ... 122
 8.4 Spectral Decomposition .. 125
 *8.5 Jordan Normal Form ... 130
9 Linear and Bilinear Forms .. 137
 9.1 The Dual Space .. 137
 9.2 Bilinear Forms .. 142
 9.3 Quadratic Forms .. 144
 9.4 The Normal Form ... 145
10 Hermitian Inner Product Spaces 153
 10.1 Fundamental Concepts ... 154
 10.2 Orthogonality Relationships in Pseudo-Euclidean Space 157
 10.3 Unitary Geometric Algebra of Pseudo-Euclidean Space 161
 10.4 Hermitian Orthogonality .. 166
 10.5 Hermitian, Normal, and Unitary Operators 172
 *10.6 Principal Correlation .. 175
 *10.7 Polar and Singular Value Decomposition 178
11 Geometry of Moving Planes ... 181
 11.1 Geometry of Space–Time ... 181
 11.2 Relative Orthonormal Basis 186
 11.3 Relative Geometric Algebras 189
 11.4 Moving Planes .. 191
 *11.5 Splitting the Plane .. 194
12 Representation of the Symmetric Group 201
 12.1 The Twisted Product .. 201
 12.1.1 Special Properties ... 203
 12.1.2 Basic Relationships .. 204
 12.2 Geometric Numbers in $\mathbb{G}_{n,n}$ 205
 12.3 The Twisted Product of Geometric Numbers 207
Contents

12.4 Symmetric Groups in Geometric Algebras 210
12.4.1 The Symmetric Group S_4 in $\mathbb{G}_{4,4}$ 211
12.4.2 The Geometric Algebra $\mathbb{G}_{4,4}$ 214
12.4.3 The General Construction in $\mathbb{G}_{n,n}$ 217

*12.5 The Heart of the Matter ... 218

13 Calculus on m-Surfaces .. 223
13.1 Rectangular Patches on a Surface 223
13.2 The Vector Derivative and the Directed Integral 229
13.3 Classical Theorems of Integration 236

14 Differential Geometry of Curves .. 243
14.1 Definition of a Curve ... 243
14.2 Formulas of Frenet–Serret .. 245
14.3 Special Curves .. 248
14.4 Uniqueness Theorem for Curves 249

15 Differential Geometry of k-Surfaces 253
15.1 The Definition of a k-Surface \mathcal{M} in \mathbb{R}^n 254
15.2 The Shape Operator ... 261
15.3 Geodesic Curvature and Normal Curvature 267
15.4 Gaussian, Mean, and Principal Curvatures of \mathcal{M} 270
15.5 The Curvature Bivector of a k-Surface \mathcal{M} 271

16 Mappings Between Surfaces ... 275
16.1 Mappings Between Surfaces 275
16.2 Projectively Related Surfaces 279
16.3 Conformally Related Surfaces 282
16.4 Conformal Mapping in $\mathbb{R}^{p,q}$ 286
16.5 Möbius Transformations and Ahlfors–Vahlen Matrices 287
*16.6 Affine Connections ... 291

17 Non-euclidean and Projective Geometries 297
17.1 The Affine n-Plane \mathcal{A}_h^n 297
17.2 The Meet and Joint Operations 299
17.3 Projective Geometry ... 304
17.4 Conics ... 312
17.5 Projective Geometry Is All of Geometry 319
17.6 The Horosphere $\mathcal{H}^{p,q}$ 321

18 Lie Groups and Lie Algebras .. 329
18.1 Bivector Representation ... 329
18.2 The General Linear Group .. 333
18.3 The Algebra $\mathbb{O}_{n,n}$... 337
18.4 Orthogonal Lie Groups and Their Lie Algebras 339
18.5 Semisimple Lie Algebras ... 345
18.6 The Lie Algebras A_n .. 348
New Foundations in Mathematics
The Geometric Concept of Number
Sobczyk, G.
2013, XIV, 370 p. 55 illus., 32 illus. in color., Hardcover
ISBN: 978-0-8176-8384-9
A product of Birkhäuser Basel