Chapter 1
Introduction to Finite Frame Theory

Peter G. Casazza, Gitta Kutyniok, and Friedrich Philipp

Abstract To date, frames have established themselves as a standard notion in applied mathematics, computer science, and engineering as a means to derive redundant, yet stable decompositions of a signal for analysis or transmission, while also promoting sparse expansions. The reconstruction procedure is then based on one of the associated dual frames, which—in the case of a Parseval frame—can be chosen to be the frame itself. In this chapter, we provide a comprehensive review of the basics of finite frame theory upon which the subsequent chapters are based. After recalling some background information on Hilbert space theory and operator theory, we introduce the notion of a frame along with some crucial properties and construction procedures. Then we discuss algorithmic aspects such as basic reconstruction algorithms and present brief introductions to diverse applications and extensions of frames. The subsequent chapters of this book will then extend key topics in many intriguing directions.

Keywords Applications of finite frames · Construction of frames · Dual frames · Frames · Frame operator · Grammian operator · Hilbert space theory · Operator theory · Reconstruction algorithms · Redundancy · Tight frames

1.1 Why Frames?

The Fourier transform has been a major tool in analysis for over 100 years. However, it solely provides frequency information, and hides (in its phases) information concerning the moment of emission and duration of a signal. D. Gabor resolved this
problem in 1946 [92] by introducing a fundamental new approach to signal decomposition. Gabor’s approach quickly became the paradigm for this area, because it provided resilience to additive noise, quantization, and transmission losses as well as an ability to capture important signal characteristics. Unbeknownst to Gabor, he had discovered the fundamental properties of a frame without any of the formalism. In 1952, Duffin and Schaeffer [79] were studying some deep problems in nonharmonic Fourier series for which they required a formal structure for working with highly overcomplete families of exponential functions in $L^2[0, 1]$. For this, they introduced the notion of a Hilbert space frame, in which Gabor’s approach is now a special case, falling into the area of time-frequency analysis [97]. Much later—in the late 1980s—the fundamental concept of frames was revived by Daubechies, Grossman and Mayer [76] (see also [75]), who showed its importance for data processing.

Traditionally, frames were used in signal and image processing, nonharmonic Fourier series, data compression, and sampling theory. But today, frame theory has ever-increasing applications to problems in both pure and applied mathematics, physics, engineering, and computer science, to name a few. Several of these applications will be investigated in this book. Since applications mainly require frames in finite-dimensional spaces, this will be our focus. In this situation, a frame is a spanning set of vectors—which are generally redundant (overcomplete), requiring control of its condition numbers. Thus a typical frame possesses more frame vectors than the dimension of the space, and each vector in the space will have infinitely many representations with respect to the frame. It is this redundancy of frames which is key to their significance for applications.

The role of redundancy varies depending on the requirements of the applications at hand. First, redundancy gives greater design flexibility, which allows frames to be constructed to fit a particular problem in a manner not possible by a set of linearly independent vectors. For instance, in areas such as quantum tomography, classes of orthonormal bases with the property that the modulus of the inner products of vectors from different bases are a constant are required. A second example comes from speech recognition, when a vector needs to be determined by the absolute value of the frame coefficients (up to a phase factor). A second major advantage of redundancy is robustness. By spreading the information over a wider range of vectors, resilience against losses (erasures) can be achieved. Erasures are, for instance, a severe problem in wireless sensor networks when transmission losses occur or when sensors are intermittently fading out, or in modeling the brain where memory cells are dying out. A further advantage of spreading information over a wider range of vectors is to mitigate the effects of noise in the signal.

These examples represent a tiny fraction of the theory and applications of frame theory that you will encounter in this book. New theoretical insights and novel applications are continually arising due to the fact that the underlying principles of frame theory are basic ideas which are fundamental to a wide canon of areas of research. In this sense, frame theory might be regarded as partly belonging to applied harmonic analysis, functional analysis, operator theory, numerical linear algebra, and matrix theory.
1.1.1 The Role of Decompositions and Expansions

Focusing on the finite-dimensional situation, let \(x \) be given data which we assume to belong to some real or complex \(N \)-dimensional Hilbert space \(\mathcal{H}^N \). Further, let \((\varphi_i)_{i=1}^M \) be a representation system (i.e., a spanning set) in \(\mathcal{H}^N \), which might be chosen from an existing catalog, designed depending on the type of data we are facing, or learned from sample sets of the data.

One common approach to data processing consists in the decomposition of the data \(x \) according to the system \((\varphi_i)_{i=1}^M\) by considering the map

\[
x \mapsto (\langle x, \varphi_i \rangle)_{i=1}^M.
\]

As we will see, the generated sequence \((\langle x, \varphi_i \rangle)_{i=1}^M\) belonging to \(\ell_2(\{1, \ldots, M\}) \) can then be used, for instance, for transmission of \(x \). Also, a careful choice of the representation system enables us to solve a variety of analysis tasks. As an example, under certain conditions the positions and orientations of edges of an image \(x \) are determined by those indices \(i \in \{1, \ldots, M\} \) belonging to the largest coefficients in magnitude \(|\langle x, \varphi_i \rangle| \), i.e., by hard thresholding, in the case that \((\varphi_i)_{i=1}^M \) is a shearlet system (see [115]). Finally, the sequence \((\langle x, \varphi_i \rangle)_{i=1}^M\) allows compression of \(x \), which is in fact the heart of the new JPEG2000 compression standard when choosing \((\varphi_i)_{i=1}^M\) to be a wavelet system [140].

An accompanying approach is the expansion of the data \(x \) by considering sequences \((c_i)_{i=1}^M\) satisfying

\[
x = \sum_{i=1}^M c_i \varphi_i.
\]

It is well known that suitably chosen representation systems allow sparse sequences \((c_i)_{i=1}^M\) in the sense that \(\|c\|_0 = \#\{i : c_i \neq 0\} \) is small. For example, certain wavelet systems typically sparsify natural images in this sense (see, for example, [77, 122, 133] and the references therein). This observation is key to allowing the application of the abundance of existing sparsity methodologies such as compressed sensing [86] to \(x \). In contrast to this viewpoint which assumes \(x \) as explicitly given, the approach of expanding the data is also highly beneficial in the case where \(x \) is only implicitly given, which is, for instance, the problem all partial differential equation (PDE) solvers face. Hence, using \((\varphi_i)_{i=1}^M\) as a generating system for the trial space, the PDE solver’s task reduces to computing \((c_i)_{i=1}^M\), which is advantageous for deriving efficient solvers provided that—as before—a sparse sequence does exist (see, e.g., [73, 106]).
1.1.2 Beyond Orthonormal Bases

To choosing the representation system $(\varphi_i)_{i=1}^N$ to form an orthonormal basis for \mathcal{H}_N is the standard choice. However, the linear independence of such a system causes a variety of problems for the aforementioned applications.

Starting with the decomposition viewpoint, using $((x, \varphi_i))_{i=1}^N$ for transmission is far from being robust to erasures, since the erasure of only a single coefficient causes a true information loss. Also, for analysis tasks orthonormal bases can be unfavorable, since they do not allow any flexibility in design, which is needed, for instance, in the design of directional representation systems. In fact, it is conceivable that no orthonormal basis with paralleling properties such as curvelets or shearlets does exist.

Also, from an expansion point of view, the utilization of orthonormal bases is not advisable. A particular problem affecting sparsity methodologies as well as the utilization for PDE solvers is the uniqueness of the sequence $(c_i)_{i=1}^M$. This non-flexibility prohibits the search for a sparse coefficient sequence.

It is evident that these problems can be tackled by allowing the system $(\varphi_i)_{i=1}^M$ to be redundant. Certainly, numerical stability issues in the typical processing of data

$$x \mapsto (x, \varphi_i)_{i=1}^M \mapsto \sum_{i=1}^M (x, \varphi_i)\tilde{\varphi}_i \approx x$$

with an adapted system $(\tilde{\varphi}_i)_{i=1}^M$ must be taken into account. This leads naturally to the notion of a (Hilbert space) frame. The main idea is to have a controlled norm equivalence between the data x and the sequence of coefficients $((x, \varphi_i))_{i=1}^M$.

The area of frame theory is very closely related to other research fields in both pure and applied mathematics. General (Hilbert space) frame theory—in particular, including the infinite-dimensional situation—intersects functional analysis and operator theory. It also bears close relations to the area of applied harmonic analysis, in which the design of representation systems, typically by a careful partitioning of the Fourier domain, is one major objective. Some researchers even consider frame theory as belonging to this area. Restricting to the finite-dimensional situation—in which customarily the term finite frame theory is used—the classical areas of matrix theory and numerical linear algebra have close intersections, but also, for instance, the novel area of compressed sensing, as already pointed out.

Nowadays, frames have established themselves as a standard notion in applied mathematics, computer science, and engineering. Finite frame theory deserves special attention due to its importance for applications, and might be even considered a research area of its own. This is also the reason why this book specifically focuses on finite frame theory. The subsequent chapters will show the diversity of this rich and vivid research area to date, ranging from the development of frameworks to analyzing specific properties of frames, the design of different classes of frames, various applications of frames, and extensions of the notion of a frame.
1.3 Outline

In Sect. 1.2 we first provide some background information on Hilbert space theory and operator theory to make this book self-contained. Frames are then subsequently introduced in Sect. 1.3, followed by a discussion of the four main operators associated with a frame, namely, the analysis, synthesis, frame, and Gramian operators (see Sect. 1.4). Reconstruction results and algorithms naturally including the notion of a dual frame are the focus of Sect. 1.5. This is followed by the presentation of different constructions of tight as well as non-tight frames (Sect. 1.6), and a discussion of some crucial properties of frames, in particular, their spanning properties, the redundancy of a frame, and equivalence relations among frames in Sect. 1.7. This chapter is concluded with brief introductions to diverse applications and extensions of frames (Sects. 1.8 and 1.9).

1.2 Background Material

Let us start by recalling some basic definitions and results from Hilbert space theory and operator theory, which will be required for all subsequent chapters. We do not include the proofs of the presented results; instead, we refer to the standard literature such as, for instance, [152] for Hilbert space theory and [70, 104, 129] for operator theory. We emphasize that all following results are solely stated in the finite-dimensional setting, which is the focus of this book.

1.2.1 Review of Basics from Hilbert Space Theory

Letting N be a positive integer, we denote by \mathcal{H}^N a real or complex N-dimensional Hilbert space. This will be the space considered throughout this book. Sometimes, if it is convenient, we identify \mathcal{H}^N with \mathbb{R}^N or \mathbb{C}^N. By $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$ we denote the inner product on \mathcal{H}^N and its corresponding norm, respectively.

Let us now start with the origin of frame theory, which is the notion of an orthonormal basis. Alongside, we recall the basic definitions we will also require in the sequel.

Definition 1.1 A vector $x \in \mathcal{H}^N$ is called normalized if $\|x\| = 1$. Two vectors $x, y \in \mathcal{H}^N$ are called orthogonal if $\langle x, y \rangle = 0$. A system $(e_i)^k_{i=1}$ of vectors in \mathcal{H}^N is called

(a) complete (or a spanning set) if $\text{span}\{e_i\}^k_{i=1} = \mathcal{H}^N$.
(b) orthogonal if for all $i \neq j$, the vectors e_i and e_j are orthogonal.
(c) orthonormal if it is orthogonal and each e_i is normalized.
(e) an orthonormal basis for \mathcal{H}^N if it is complete and orthonormal.
A fundamental result in Hilbert space theory is Parseval’s identity.

Proposition 1.1 (Parseval’s Identity) If \((e_i)_{i=1}^N\) is an orthonormal basis for \(\mathcal{H}^N\), then, for every \(x \in \mathcal{H}^N\), we have

\[
\|x\|^2 = \sum_{i=1}^{N} |\langle x, e_i \rangle|^2.
\]

Interpreting this identity from a signal processing point of view, it implies that the energy of the signal is preserved under the map \(x \mapsto (\langle x, e_i \rangle)_{i=1}^N\), which we will later refer to as the analysis map. We also mention at this point that this identity is not only satisfied by orthonormal bases. In fact, redundant systems (“non-bases”) such as \((e_1, \frac{1}{\sqrt{2}} e_2, \frac{1}{\sqrt{3}} e_3, \frac{1}{\sqrt{3}} e_3, \ldots, \frac{1}{\sqrt{N}} e_N, \ldots, \frac{1}{\sqrt{N}} e_N)\) also satisfy this equality, and will later be coined Parseval frames.

Parseval’s identity has the following implication, which shows that a vector \(x\) can be recovered from the coefficients \((\langle x, e_i \rangle)_{i=1}^N\) by a simple procedure. Thus, from an application point of view, this result can also be interpreted as a reconstruction formula.

Corollary 1.1 If \((e_i)_{i=1}^N\) is an orthonormal basis for \(\mathcal{H}^N\), then, for every \(x \in \mathcal{H}^N\), we have

\[
x = \sum_{i=1}^{N} \langle x, e_i \rangle e_i.
\]

Next, we present a series of basic identities and inequalities, which are exploited in various proofs.

Proposition 1.2 Let \(x, \tilde{x} \in \mathcal{H}^N\).

(i) Cauchy-Schwarz inequality. We have

\[
|\langle x, \tilde{x} \rangle| \leq \|x\| \|\tilde{x}\|,
\]

with equality if and only if \(x = c \tilde{x}\) for some constant \(c\).

(ii) Triangle inequality. We have

\[
\|x + \tilde{x}\| \leq \|x\| + \|\tilde{x}\|.
\]

(iii) Polarization identity (real form). If \(\mathcal{H}^N\) is real, then

\[
\langle x, \tilde{x} \rangle = \frac{1}{4} [\|x + \tilde{x}\|^2 - \|x - \tilde{x}\|^2].
\]

(iv) Polarization identity (complex form). If \(\mathcal{H}^N\) is complex, then

\[
\langle x, \tilde{x} \rangle = \frac{1}{4} [\|x + \tilde{x}\|^2 - \|x - \tilde{x}\|^2] + \frac{i}{4} [\|x + i\tilde{x}\|^2 - \|x - i\tilde{x}\|^2].
\]
(v) Pythagorean theorem. Given pairwise orthogonal vectors \((x_i)_{i=1}^M \in \mathcal{H}^N\), we have

\[
\left\| \sum_{i=1}^M x_i \right\|^2 = \sum_{i=1}^M \|x_i\|^2.
\]

We next turn to considering subspaces in \(\mathcal{H}^N\), again starting with the basic notation and definitions.

Definition 1.2 Let \(\mathcal{W}, \mathcal{V}\) be subspaces of \(\mathcal{H}^N\).

(a) A vector \(x \in \mathcal{H}^N\) is called orthogonal to \(\mathcal{W}\) (denoted by \(x \perp \mathcal{W}\)), if

\[
\langle x, \tilde{x} \rangle = 0 \quad \text{for all } \tilde{x} \in \mathcal{W}.
\]

The orthogonal complement of \(\mathcal{W}\) is then defined by

\[
\mathcal{W}^\perp = \{ x \in \mathcal{H}^N : x \perp \mathcal{W} \}.
\]

(b) The subspaces \(\mathcal{W}\) and \(\mathcal{V}\) are called orthogonal subspaces (denoted by \(\mathcal{W} \perp \mathcal{V}\)), if \(\mathcal{W} \subset \mathcal{V}^\perp\) (or, equivalently, \(\mathcal{V} \subset \mathcal{W}^\perp\)).

The notion of orthogonal direct sums, which will play an essential role in Chap. 13, can be regarded as a generalization of Parseval’s identity (Proposition 1.1).

Definition 1.3 Let \((\mathcal{W}_i)_{i=1}^M\) be a family of subspaces of \(\mathcal{H}^N\). Then their orthogonal direct sum is defined as the space

\[
\left(\sum_{i=1}^M \mathcal{W}_i \right)_{\ell^2} := \mathcal{W}_1 \times \cdots \times \mathcal{W}_M
\]

with inner product defined by

\[
\langle x, \tilde{x} \rangle = \sum_{i=1}^M \langle x_i, \tilde{x}_i \rangle \quad \text{for all } x = (x_i)_{i=1}^M, \tilde{x} = (\tilde{x}_i)_{i=1}^M \in \left(\sum_{i=1}^M \mathcal{W}_i \right)_{\ell^2}.
\]

The extension of Parseval’s identity can be seen when choosing \(\tilde{x} = x\) yielding

\[
\|x\|^2 = \sum_{i=1}^M \|x_i\|^2.
\]

1.2.2 Review of Basics from Operator Theory

We next introduce the basic results from operator theory used throughout this book. We first recall that each linear operator has an associated matrix representation.
Definition 1.4 Let $T : \mathcal{H}^N \to \mathcal{H}^K$ be a linear operator, let $(e_i)_{i=1}^N$ be an orthonormal basis for \mathcal{H}^N, and let $(g_i)_{i=1}^K$ be an orthonormal basis for \mathcal{H}^K. Then the matrix representation of T (with respect to the orthonormal bases $(e_i)_{i=1}^N$ and $(g_i)_{i=1}^K$) is a matrix of size $K \times N$ and is given by $A = (a_{ij})_{i=1,j=1}^{K,N}$, where

\[a_{ij} = \langle Te_j, g_i \rangle. \]

For all $x \in \mathcal{H}^N$ with $c = (\langle x, e_i \rangle)_{i=1}^N$ we have

\[Tx = Ac. \]

1.2.2.1 Invertibility

We start with the following definition.

Definition 1.5 Let $T : \mathcal{H}^N \to \mathcal{H}^K$ be a linear operator.

(a) The kernel of T is defined by $\ker T := \{x \in \mathcal{H}^N : Tx = 0\}$. Its range is $\text{ran } T := \{Tx : x \in \mathcal{H}^N\}$, sometimes also called the image and denoted by $\text{im } T$. The rank of T, $\text{rank } T$, is the dimension of the range of T.

(b) The operator T is called injective (or one-to-one), if $\ker T = \{0\}$, and surjective (or onto), if $\text{ran } T = \mathcal{H}^K$. It is called bijective (or invertible), if T is both injective and surjective.

(c) The adjoint operator $T^* : \mathcal{H}^K \to \mathcal{H}^N$ is defined by

\[\langle Tx, \tilde{x} \rangle = \langle x, T^* \tilde{x} \rangle \quad \text{for all } x \in \mathcal{H}^N \text{ and } \tilde{x} \in \mathcal{H}^K. \]

(d) The norm of T is defined by

\[\|T\| := \sup\{\|Tx\| : \|x\| = 1\}. \]

The next result states several relations between these notions.

Proposition 1.3

(i) Let $T : \mathcal{H}^N \to \mathcal{H}^K$ be a linear operator. Then

\[\dim \mathcal{H}^N = N = \dim \ker T + \text{rank } T. \]

Moreover, if T is injective, then $T^* T$ is also injective.

(ii) Let $T : \mathcal{H}^N \to \mathcal{H}^N$ be a linear operator. Then T is injective if and only if it is surjective. Moreover, $\ker T = (\text{ran } T^*)^\perp$, and hence

\[\mathcal{H}^N = \ker T \oplus \text{ran } T^*. \]
If $T : \mathcal{H}^N \to \mathcal{H}^N$ is an injective operator, then T is obviously invertible. If an operator $T : \mathcal{H}^N \to \mathcal{H}^K$ is not injective, we can make T injective by restricting it to $\ker T \perp$. However, $T|_{(\ker T) \perp}$ might still not be invertible, since it does not need to be surjective. This can be ensured by considering the operator $T : (\ker T) \perp \to \text{ran } T$, which is now invertible.

The Moore-Penrose inverse of an injective operator provides a one-sided inverse for the operator.

Definition 1.6 Let $T : \mathcal{H}^N \to \mathcal{H}^K$ be an injective, linear operator. The *Moore-Penrose inverse* of T, T^\dagger, is defined by

$$T^\dagger = (T^* T)^{-1} T^*.$$

It is immediate to prove invertibility from the left as stated in the following result.

Proposition 1.4 If $T : \mathcal{H}^N \to \mathcal{H}^K$ is an injective, linear operator, then $T^\dagger T = \text{Id}$.

Thus, T^\dagger plays the role of the inverse on $\text{ran } T$—not on all of \mathcal{H}^K. It projects a vector from \mathcal{H}^K onto $\text{ran } T$ and then inverts the operator on this subspace.

A more general notion of this inverse is called the *pseudoinverse*, which can be applied to a non-injective operator. In fact, it adds one more step to the action of T^\dagger by first restricting to $(\ker T) \perp$ to enforce injectivity of the operator followed by application of the Moore-Penrose inverse of this new operator. This pseudoinverse can be derived from the singular value decomposition. Recalling that by fixing orthonormal bases of the domain and range of a linear operator we derive an associated unique matrix representation; we begin by stating this decomposition in terms of a matrix.

Theorem 1.1 Let A be an $M \times N$ matrix. Then there exist an $M \times M$ matrix U with $U^* U = \text{Id}$, and an $N \times N$ matrix V with $V^* V = \text{Id}$, and an $M \times N$ diagonal matrix Σ with nonnegative, decreasing real entries on the diagonal such that

$$A = U \Sigma V^*.$$

Hereby, an $M \times N$ diagonal matrix with $M \neq N$ is an $M \times N$ matrix $(a_{ij})_{i=1, j=1}^{M,N}$ with $a_{ij} = 0$ for $i \neq j$.

Definition 1.7 Let A be an $M \times N$ matrix, and let U, Σ, and V be chosen as in Theorem 1.1. Then $A = U \Sigma V^*$ is called the *singular value decomposition (SVD)* of A. The column vectors of U are called the *left singular vectors*, and the column vectors of V are referred to as the *right singular vectors* of A.

The pseudoinverse A^+ of A can be deduced from the SVD in the following way.
Theorem 1.2 Let A be an $M \times N$ matrix, and let $A = U \Sigma V^*$ be its singular value decomposition. Then

$$A^+ = V \Sigma^+ U^*,$$

where Σ^+ is the $N \times M$ diagonal matrix arising from Σ^* by inverting the nonzero (diagonal) entries.

1.2.2.2 Riesz bases

In the previous subsection, we recalled the notion of an orthonormal basis. However, sometimes the requirement of orthonormality is too strong, but uniqueness of a decomposition as well as stability are to be retained. The notion of a Riesz basis, which we next introduce, satisfies these desiderata.

Definition 1.8 A family of vectors $(\varphi_i)_{i=1}^N$ in a Hilbert space \mathcal{H}^N is a **Riesz basis** with **lower** (respectively, **upper**) **Riesz bounds** A (resp. B), if, for all scalars $(a_i)_{i=1}^N$, we have

$$A \sum_{i=1}^N |a_i|^2 \leq \left\| \sum_{i=1}^N a_i \varphi_i \right\|^2 \leq B \sum_{i=1}^N |a_i|^2.$$

The following result is immediate from the definition.

Proposition 1.5 Let $(\varphi_i)_{i=1}^N$ be a family of vectors. Then the following conditions are equivalent.

(i) $(\varphi_i)_{i=1}^N$ is a Riesz basis for \mathcal{H}^N with Riesz bounds A and B.

(ii) For any orthonormal basis $(e_i)_{i=1}^N$ for \mathcal{H}^N, the operator T on \mathcal{H}^N given by $Te_i = \varphi_i$ for all $i = 1, 2, \ldots, N$ is an invertible operator with $\|T\|^2 \leq B$ and $\|T^{-1}\|^{-2} \geq A$.

1.2.2.3 Diagonalization

Next, we continue our list of important properties of linear operators.

Definition 1.9 A linear operator $T : \mathcal{H}^N \to \mathcal{H}^K$ is called

(a) **self-adjoint**, if $\mathcal{H}^N = \mathcal{H}^K$ and $T = T^*$.

(b) **normal**, if $\mathcal{H}^N = \mathcal{H}^K$ and $T^*T = TT^*$.

(c) **an isometry**, if $\|Tx\| = \|x\|$ for all $x \in \mathcal{H}^N$.

(d) **positive**, if $\mathcal{H}^N = \mathcal{H}^K$, T is self-adjoint, and $\langle Tx, x \rangle \geq 0$ for all $x \in \mathcal{H}^N$.

(e) **unitary**, if it is a surjective isometry.
From the variety of basic relations and results of those notions, the next proposition presents a selection of those which will be required in the sequel.

Proposition 1.6 Let \(T : \mathcal{H}^N \rightarrow \mathcal{H}^K \) be a linear operator.

(i) We have \(\|T^*T\| = \|T\|^2 \), and \(T^*T \) and \(TT^* \) are self-adjoint.

(ii) If \(\mathcal{H}^N = \mathcal{H}^K \), the following conditions are equivalent.

1. \(T \) is self-adjoint.
2. \(\langle Tx, \tilde{x} \rangle = \langle x, T\tilde{x} \rangle \) for all \(x, \tilde{x} \in \mathcal{H}^N \).
3. If \(\mathcal{H}^N \) is complex, \(\langle Tx, x \rangle \in \mathbb{R} \) for all \(x \in \mathcal{H}^N \).

(iii) The following conditions are equivalent.

1. \(T \) is an isometry.
2. \(T^*T = \text{Id} \).
3. \(\langle Tx, T\tilde{x} \rangle = \langle x, \tilde{x} \rangle \) for all \(x, \tilde{x} \in \mathcal{H}^N \).

(iv) The following conditions are equivalent.

1. \(T \) is unitary.
2. \(T \) and \(T^* \) are isometric.
3. \(TT^* = \text{Id} \) and \(T^*T = \text{Id} \).

(v) If \(U \) is a unitary operator, then \(\|UT\| = \|T\| = \|TU\| \).

Diagonalizations of operators are frequently utilized to derive an understanding of the action of an operator. The following definitions lay the groundwork for this theory.

Definition 1.10 Let \(T : \mathcal{H}^N \rightarrow \mathcal{H}^N \) be a linear operator. A nonzero vector \(x \in \mathcal{H}^N \) is an eigenvector of \(T \) with eigenvalue \(\lambda \), if \(Tx = \lambda x \). The operator \(T \) is called orthogonally diagonalizable, if there exists an orthonormal basis \((e_i)_{i=1}^N \) of \(\mathcal{H}^N \) consisting of eigenvectors of \(T \).

We start with an easy observation.

Proposition 1.7 For any linear operator \(T : \mathcal{H}^N \rightarrow \mathcal{H}^K \), the nonzero eigenvalues of \(T^*T \) and \(TT^* \) are the same.

If the operator is unitary, self-adjoint, or positive, we have more information on the eigenvalues stated in the next result, which follows immediately from Proposition 1.6.

Corollary 1.2 Let \(T : \mathcal{H}^N \rightarrow \mathcal{H}^N \) be a linear operator.

(i) If \(T \) is unitary, then its eigenvalues have modulus one.

(ii) If \(T \) is self-adjoint, then its eigenvalues are real.

(iii) If \(T \) is positive, then its eigenvalues are nonnegative.

This fact allows us to introduce a condition number associated with each invertible positive operator.
Definition 1.11 Let $T : \mathcal{H}^N \to \mathcal{H}^N$ be an invertible positive operator with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$. Then its condition number is defined by $\frac{\lambda_1}{\lambda_N}$.

We next state a fundamental result in operator theory which has its analogue in the infinite-dimensional setting called the spectral theorem.

Theorem 1.3 Let \mathcal{H}^N be complex and let $T : \mathcal{H}^N \to \mathcal{H}^N$ be a linear operator. Then the following conditions are equivalent.

(i) T is normal.
(ii) T is orthogonally diagonalizable.
(iii) There exists a diagonal matrix representation of T.
(iv) There exist an orthonormal basis $(e_i)_{i=1}^N$ of \mathcal{H}^N and values $\lambda_1, \ldots, \lambda_N$ such that

$$Tx = \sum_{i=1}^N \lambda_i \langle x, e_i \rangle e_i \quad \text{for all } x \in \mathcal{H}^N.$$

In this case,

$$\|T\| = \max_{1 \leq i \leq N} |\lambda_i|.$$

Since every self-adjoint operator is normal, we obtain the following corollary (which is independent of whether \mathcal{H}^N is real or complex).

Corollary 1.3 A self-adjoint operator is orthogonally diagonalizable.

Another consequence of Theorem 1.3 is the following result, which in particular allows the definition of the n-th root of a positive operator.

Corollary 1.4 Let $T : \mathcal{H}^N \to \mathcal{H}^N$ be an invertible positive operator with normalized eigenvectors $(e_i)_{i=1}^N$ and respective eigenvalues $(\lambda_i)_{i=1}^N$, let $a \in \mathbb{R}$, and define an operator $T^a : \mathcal{H}^N \to \mathcal{H}^N$ by

$$T^a x = \sum_{i=1}^N \lambda_i^a \langle x, e_i \rangle e_i \quad \text{for all } x \in \mathcal{H}^N.$$

Then T^a is a positive operator and $T^a T^b = T^{a+b}$ for $a, b \in \mathbb{R}$. In particular, T^{-1} and $T^{-1/2}$ are positive operators.

Finally, we define the trace of an operator, which, by using Theorem 1.3, can be expressed in terms of eigenvalues.
Definition 1.12 Let $T : \mathcal{H}^N \rightarrow \mathcal{H}^N$ be an operator. Then, the trace of T is defined by

$$\text{Tr } T = \sum_{i=1}^{N} \langle Te_i, e_i \rangle,$$ \hspace{1cm} (1.1)

where $(e_i)_{i=1}^{N}$ is an arbitrary orthonormal basis for \mathcal{H}^N.

The trace is well defined since the sum in Eq. (1.1) is independent of the choice of the orthonormal basis.

Corollary 1.5 Let $T : \mathcal{H}^N \rightarrow \mathcal{H}^N$ be an orthogonally diagonalizable operator, and let $(\lambda_i)_{i=1}^{N}$ be its eigenvalues. Then

$$\text{Tr } T = \sum_{i=1}^{N} \lambda_i.$$

1.2.2.4 Projection operators

Subspaces are closely intertwined with associated projection operators which map vectors onto the subspace either orthogonally or not. Although orthogonal projections are more often used, in Chap. 13 we will require the more general notion.

Definition 1.13 Let $P : \mathcal{H}^N \rightarrow \mathcal{H}^N$ be a linear operator. Then P is called a projection, if $P^2 = P$. This projection is called orthogonal, if P is in addition self-adjoint.

For brevity, orthogonal projections are often simply referred to as projections provided there is no danger of misinterpretation.

Relating to our previous comment, for any subspace \mathcal{W} of \mathcal{H}^N, there exists a unique orthogonal projection P of \mathcal{H}^N having \mathcal{W} as its range. This projection can be constructed as follows: Let m denote the dimension of \mathcal{W}, and choose an orthonormal basis $(e_i)_{i=1}^{m}$ of \mathcal{W}. Then, for any $x \in \mathcal{H}^N$, we set

$$Px = \sum_{i=1}^{m} \langle x, e_i \rangle e_i.$$

It is important to notice that also $Id - P$ is an orthogonal projection of \mathcal{H}^N, this time onto the subspace \mathcal{W}^\perp.

An orthogonal projection P has the crucial property that each given vector of \mathcal{H}^N is mapped to the closest vector in the range of P.

Lemma 1.1 Let \mathcal{W} be a subspace of \mathcal{H}^N, let P be the orthogonal projection onto \mathcal{W}, and let $x \in \mathcal{H}^N$. Then

$$\|x - Px\| \leq \|x - \tilde{x}\| \text{ for all } \tilde{x} \in \mathcal{W}.$$

Moreover, if $\|x - Px\| = \|x - \tilde{x}\|$ for some $\tilde{x} \in \mathcal{W}$, then $\tilde{x} = Px$.

The next result gives the relationship between trace and rank for projections. This follows from the definition of an orthogonal projection and Corollaries 1.3 and 1.5.

Proposition 1.8 Let P be the orthogonal projection onto a subspace \mathcal{W} of \mathcal{H}^N, and let $m = \dim \mathcal{W}$. Then P is orthogonally diagonalizable with eigenvalue 1 of multiplicity m and eigenvalue 0 of multiplicity $N - m$. In particular, we have that $\text{Tr} P = m$.

1.3 Basics of Finite Frame Theory

We start by presenting the basics of finite frame theory. For illustration purposes, we then present some exemplary frame classes. At this point, we also refer to the monographs and books [34, 35, 99, 100, 111] as well as to [65, 66] for infinite-dimensional frame theory.

1.3.1 Definition of a Frame

The definition of a (Hilbert space) frame originates from early work by Duffin and Schaeffer [79] on nonharmonic Fourier series. The main idea, as discussed in Sect. 1.1, is to weaken Parseval’s identity and yet still retain norm equivalence between a signal and its frame coefficients.

Definition 1.14 A family of vectors $(\varphi_i)_{i=1}^M$ in \mathcal{H}^N is called a frame for \mathcal{H}^N, if there exist constants $0 < A \leq B < \infty$ such that

$$A \|x\|^2 \leq \sum_{i=1}^M |\langle x, \varphi_i \rangle|^2 \leq B \|x\|^2 \text{ for all } x \in \mathcal{H}^N. \tag{1.2}$$

The following notions are related to a frame $(\varphi_i)_{i=1}^M$.

(a) The constants A and B as in (1.2) are called the lower and upper frame bound for the frame, respectively. The largest lower frame bound and the smallest upper frame bound are denoted by A_{op}, B_{op} and are called the optimal frame bounds.
(b) Any family \((\varphi_i)_{i=1}^M\) satisfying the right-hand side inequality in (1.2) is called a B-Bessel sequence.

(c) If \(A = B\) is possible in (1.2), then \((\varphi_i)_{i=1}^M\) is called an A-tight frame.

(d) If \(A = B = 1\) is possible in (1.2), i.e., Parseval’s identity holds, then \((\varphi_i)_{i=1}^M\) is called a Parseval frame.

(e) If there exists a constant \(c\) such that \(\|\varphi_i\| = c\) for all \(i = 1, 2, \ldots, M\), then \((\varphi_i)_{i=1}^M\) is an equal norm frame. If \(c = 1\), \((\varphi_i)_{i=1}^M\) is a unit norm frame.

(f) If there exists a constant \(c\) such that \(|\langle \varphi_i, \varphi_j \rangle| = c\) for all \(i \neq j\), then \((\varphi_i)_{i=1}^M\) is called an equiangular frame.

(g) The values \((\langle x, \varphi_i \rangle)_{i=1}^M\) are called the frame coefficients of the vector \(x\) with respect to the frame \((\varphi_i)_{i=1}^M\).

(h) The frame \((\varphi_i)_{i=1}^M\) is called exact, if \((\varphi_i)_{i \in I}\) ceases to be a frame for \(H_N\) for every \(I = \{1, \ldots, M\} \setminus \{i_0\}, i_0 \in \{1, \ldots, M\}\).

We can immediately make the following useful observations.

Lemma 1.2 Let \((\varphi_i)_{i=1}^M\) be a family of vectors in \(H_N\).

(i) If \((\varphi_i)_{i=1}^M\) is an orthonormal basis, then \((\varphi_i)_{i=1}^M\) is a Parseval frame. The converse is not true in general.

(ii) \((\varphi_i)_{i=1}^M\) is a frame for \(H_N\) if and only if it is a spanning set for \(H_N\).

(iii) \((\varphi_i)_{i=1}^M\) is a unit norm Parseval frame if and only if it is an orthonormal basis.

(iv) If \((\varphi_i)_{i=1}^M\) is an exact frame for \(H_N\), then it is a basis of \(H_N\), i.e., a linearly independent spanning set.

Proof

(i) The first part is an immediate consequence of Proposition 1.1. For the second part, let \((e_i)_{i=1}^N\) and \((g_i)_{i=1}^N\) be orthonormal bases for \(H_N\). Then \((e_i/\sqrt{2})_{i=1}^N \cup (g_i/\sqrt{2})_{i=1}^N\) is a Parseval frame for \(H_N\), but not an orthonormal basis.

(ii) If \((\varphi_i)_{i=1}^M\) is not a spanning set for \(H_N\), then there exists \(x \neq 0\) such that \(\langle x, \varphi_i \rangle = 0\) for all \(i = 1, \ldots, M\). Hence, \((\varphi_i)_{i=1}^M\) cannot be a frame. Conversely, assume that \((\varphi_i)_{i=1}^M\) is not a frame. Then there exists a sequence \((x_n)_{n=1}^\infty\) of normalized vectors in \(H_N\) such that \(\sum_{i=1}^M |\langle x_n, \varphi_i \rangle|^2 < 1/n\) for all \(n \in \mathbb{N}\). Hence, the limit \(x\) of a convergent subsequence of \((x_n)_{n=1}^\infty\) satisfies \(\langle x, \varphi_i \rangle = 0\) for all \(i = 1, \ldots, M\).

(iii) By the Parseval property, for each \(i_0 \in \{1, \ldots, M\}\), we have

\[
\|\varphi_{i_0}\|_2^2 = \sum_{i=1}^M |\langle \varphi_{i_0}, \varphi_i \rangle|^2 = \|\varphi_{i_0}\|_2^4 + \sum_{i=1, i \neq i_0}^M |\langle \varphi_{i_0}, \varphi_i \rangle|^2.
\]

Since the frame vectors are normalized, we conclude that

\[
\sum_{i=1, i \neq i_0}^M |\langle \varphi_{i_0}, \varphi_i \rangle|^2 = 0 \quad \text{for all } i_0 \in \{1, \ldots, M\}.
\]
Hence $\langle \varphi_i, \varphi_j \rangle = 0$ for all $i \neq j$. Thus, $(\varphi_i)_{i=1}^M$ is an orthonormal system which is complete by (ii), and (iii) is proved.

(iv) If $(\varphi_i)_{i=1}^M$ is a frame, by (ii), it is also a spanning set for \mathcal{H}^N. Towards a contradiction, assume that $(\varphi_i)_{i=1}^M$ is linearly dependent. Then there exist some $i_0 \in \{1, \ldots, M\}$ and values $\lambda_i, i \in I := \{1, \ldots, M\} \setminus \{i_0\}$ such that

$$\varphi_{i_0} = \sum_{i \in I} \lambda_i \varphi_i.$$

This implies that $(\varphi_i)_{i \in I}$ is also a frame, thus contradicting exactness of the frame. □

Before presenting some insightful basic results in frame theory, we first discuss some examples of frames to develop an intuitive understanding.

1.3.2 Examples

By Lemma 1.2 (iii), orthonormal bases are unit norm Parseval frames (and vice versa). However, applications typically require redundant Parseval frames. One basic way to approach this construction problem is to build redundant Parseval frames using orthonormal bases, and we will present several examples in the sequel. Since the associated proofs are straightforward, we leave them to the interested reader.

Example 1.1 Let $(e_i)_{i=1}^N$ be an orthonormal basis for \mathcal{H}^N.

1. The system

$$(e_1, 0, e_2, 0, \ldots, e_N, 0)$$

is a Parseval frame for \mathcal{H}^N. This example indicates that a Parseval frame can indeed contain zero vectors.

2. The system

$$\left(e_1, \frac{e_2}{\sqrt{2}}, \frac{e_2}{\sqrt{2}}, \frac{e_3}{\sqrt{3}}, \frac{e_3}{\sqrt{3}}, \frac{e_3}{\sqrt{3}}, \ldots, \frac{e_N}{\sqrt{N}}, \ldots, \frac{e_N}{\sqrt{N}} \right)$$

is a Parseval frame for \mathcal{H}^N. This example indicates two important issues. First, a Parseval frame can have multiple copies of a single vector. Second, the norms of vectors of an (infinite) Parseval frame can converge to zero.

We next consider a series of examples of non-Parseval frames.

Example 1.2 Let $(e_i)_{i=1}^N$ be an orthonormal basis for \mathcal{H}^N.

1. The system

$$(e_1, e_1, \ldots, e_1, e_2, e_3, \ldots, e_N)$$

is a non-Parseval frame for \mathcal{H}^N. This example indicates that non-Parseval frames can have different norms for different vectors.
1 Introduction to Finite Frame Theory

Fig. 1.1 Mercedes-Benz frame

with the vector \(e_1 \) appearing \(N + 1 \) times, is a frame for \(\mathcal{H}^N \) with frame bounds 1 and \(N + 1 \).

(2) The system

\[
(e_1, e_1, e_2, e_2, e_3, e_3, \ldots, e_N)
\]

is a 2-tight frame for \(\mathcal{H}^N \).

(3) The union of \(L \) orthonormal bases of \(\mathcal{H}^N \) is a unit norm \(L \)-tight frame for \(\mathcal{H}^N \), generalizing (2).

A particularly interesting example is the smallest truly redundant Parseval frame for \(\mathbb{R}^2 \), which is typically coined the Mercedes-Benz frame. The reason for this naming becomes evident in Fig. 1.1.

Example 1.3 The Mercedes-Benz frame for \(\mathbb{R}^2 \) is the equal norm tight frame for \(\mathbb{R}^2 \) given by:

\[
\left(\sqrt{\frac{2}{3}} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \sqrt{\frac{2}{3}} \begin{pmatrix} \sqrt{3} \\ -\frac{1}{2} \end{pmatrix}, \sqrt{\frac{2}{3}} \begin{pmatrix} -\sqrt{3} \\ -\frac{1}{2} \end{pmatrix} \right)
\]

Note that this frame is also equiangular.

For more information on the theoretical aspects of equiangular frames we refer to [60, 91, 120, 139]. A selection of their applications is reconstruction without phase [5, 6], erasure-resilient transmission [15, 102], and coding [136]. We also refer to the Chaps. 4, 5 in this book for more details on equiangular frames.

Another standard class of examples can be derived from the discrete Fourier transform (DFT) matrix.

Example 1.4 Given \(M \in \mathbb{N} \), we let \(\omega = \exp\left(\frac{2\pi i}{M}\right) \). Then the DFT matrix in \(\mathbb{C}^{M \times M} \) is defined by

\[
D_M = \frac{1}{\sqrt{M}} \omega^{jk} \delta_{M-1, j, k=0},
\]
This matrix is a unitary operator on \(\mathbb{C}^M \). Later (see Corollary 1.11) it will be seen that the selection of any \(N \) rows from \(D_M \) yields a Parseval frame for \(\mathbb{C}^N \) by taking the associated \(M \) column vectors.

There also exist particularly interesting classes of frames such as Gabor frames utilized primarily for audio processing. Among the results on various aspects of Gabor frames are uncertainty considerations [113], linear independence [119], group-related properties [89], optimality analysis [127], and applications [67, 74, 75, 87, 88]. Chapter 6 provides a survey on this class of frames. Another example is the class of group frames, for which various constructions [24, 101, 147], classifications [64], and intriguing symmetry properties [146, 148] have been studied. A comprehensive presentation can be found in Chap. 5.

1.4 Frames and Operators

For the rest of this introduction we set \(\ell^M_2 := \ell_2(\{1, \ldots, M\}) \). Note that this space in fact coincides with \(\mathbb{R}^M \) or \(\mathbb{C}^M \), endowed with the standard inner product and the associated Euclidean norm.

The analysis, synthesis, and frame operators determine the operation of a frame when analyzing and reconstructing a signal. The Gramian operator is perhaps not that well known, yet it crucially illuminates the behavior of a frame \((\varphi_i)_{i=1}^M\) embedded as an \(N \)-dimensional subspace in the high-dimensional space \(\ell^M_2 \).

1.4.1 Analysis and Synthesis Operators

Two of the main operators associated with a frame are the analysis and synthesis operators. The analysis operator—as the name suggests—analyzes a signal in terms of the frame by computing its frame coefficients. We start by formalizing this notion.

Definition 1.15 Let \((\varphi_i)_{i=1}^M\) be a family of vectors in \(\mathcal{H}^N \). Then the associated **analysis operator** \(T : \mathcal{H}^N \rightarrow \ell^M_2 \) is defined by

\[
T x := (\langle x, \varphi_i \rangle)_{i=1}^M, \quad x \in \mathcal{H}^N.
\]

In the following lemma we derive two basic properties of the analysis operator.

Lemma 1.3 Let \((\varphi_i)_{i=1}^M\) be a sequence of vectors in \(\mathcal{H}^N \) with associated analysis operator \(T \).

(i) We have

\[
\|T x\|^2 = \sum_{i=1}^M |\langle x, \varphi_i \rangle|^2 \quad \text{for all } x \in \mathcal{H}^N.
\]

Hence, \((\varphi_i)_{i=1}^M\) is a frame for \(\mathcal{H}^N \) if and only if \(T \) is injective.
(ii) The adjoint operator $T^* : \ell_2^M \to \mathcal{H}^N$ of T is given by

$$T^* (a_i)_{i=1}^M = \sum_{i=1}^M a_i \varphi_i.$$

Proof (i) This is an immediate consequence of the definition of T and the frame property (1.2).

(ii) For $x = (a_i)_{i=1}^M$ and $y \in \mathcal{H}^N$, we have

$$\langle T^* x, y \rangle = \langle x, Ty \rangle = \langle (a_i)_{i=1}^M, ((y, \varphi_i))_{i=1}^M \rangle = \sum_{i=1}^M a_i \langle y, \varphi_i \rangle = \sum_{i=1}^M a_i \varphi_i, y \rangle.$$

Thus, T^* is as claimed. \hfill \Box

The second main operator associated to a frame, the synthesis operator, is now defined as the adjoint operator to the analysis operator given in Lemma 1.3(ii).

Definition 1.16 Let $(\varphi_i)_{i=1}^M$ be a sequence of vectors in \mathcal{H}^N with associated analysis operator T. Then the associated synthesis operator is defined to be the adjoint operator T^*.

The next result summarizes some basic, yet useful, properties of the synthesis operator.

Lemma 1.4 Let $(\varphi_i)_{i=1}^M$ be a sequence of vectors in \mathcal{H}^N with associated analysis operator T.

(i) Let $(e_i)_{i=1}^M$ denote the standard basis of ℓ_2^M. Then for all $i = 1, 2, \ldots, M$, we have $T^* e_i = T^* P e_i = \varphi_i$, where $P : \ell_2^M \to \ell_2^M$ denotes the orthogonal projection onto $\text{ran} \ T$.

(ii) $(\varphi_i)_{i=1}^M$ is a frame if and only if T^* is surjective.

Proof The first claim follows immediately from Lemma 1.3 and the fact that $\ker T^* = (\text{ran} \ T)^\perp$. The second claim is a consequence of $\text{ran} T^* = (\ker T)^\perp$ and Lemma 1.3(i). \hfill \Box

Often frames are modified by the application of an invertible operator. The next result shows not only the impact on the associated analysis operator, but also the fact that the new sequence again forms a frame.

Proposition 1.9 Let $\Phi = (\varphi_i)_{i=1}^M$ be a sequence of vectors in \mathcal{H}^N with associated analysis operator T_Φ and let $F : \mathcal{H}^N \to \mathcal{H}^N$ be a linear operator. Then the analysis operator of the sequence $F\Phi = (F\varphi_i)_{i=1}^M$ is given by

$$T_{F\Phi} = T_\Phi F^*.$$
Moreover, if Φ is a frame for H^N and F is invertible, then $F\Phi$ is also a frame for H^N.

Proof For $x \in H^N$ we have
\[T_{F\Phi}x = \left(\langle x, F\varphi_i \rangle \right)_{i=1}^M = \left(\langle F^*x, \varphi_i \rangle \right)_{i=1}^M = T_\Phi F^*x. \]

This proves $T_{F\Phi} = T_\Phi F^*$. The moreover part follows from Lemma 1.4(ii). \qed

Next, we analyze the structure of the matrix representation of the synthesis operator. This matrix is of fundamental importance, since this is what most frame constructions in fact focus on; see also Sect. 1.6.

The first result provides the form of this matrix along with stability properties.

Lemma 1.5 Let $(\varphi_i)_{i=1}^M$ be a frame for H^N with analysis operator T. Then a matrix representation of the synthesis operator T^* is the $N \times M$ matrix given by
\[
\begin{bmatrix}
\varphi_1 & \varphi_2 & \cdots & \varphi_M \\
\end{bmatrix}.
\]

Moreover, the Riesz bounds of the row vectors of this matrix equal the frame bounds of the column vectors.

Proof The form of the matrix representation is obvious. To prove the moreover part, let $(e_j)_{j=1}^N$ be the corresponding orthonormal basis of H^N and for $j = 1, 2, \ldots, N$ let
\[
\psi_j = \left[\langle \varphi_1, e_j \rangle, \langle \varphi_2, e_j \rangle, \ldots, \langle \varphi_M, e_j \rangle \right]
\]
be the row vectors of the matrix. Then for $x = \sum_{j=1}^N a_j e_j$ we obtain
\[
\sum_{i=1}^M |\langle x, \varphi_i \rangle|^2 = \sum_{i=1}^M \left| \sum_{j=1}^N a_j \langle \varphi_j, \varphi_i \rangle \right|^2 = \sum_{j,k=1}^N a_j \overline{a_k} \sum_{i=1}^M \langle e_j, \varphi_i \rangle \langle \varphi_i, e_k \rangle = \sum_{j,k=1}^N a_j \overline{a_k} \langle \psi_k, \psi_j \rangle \leq \left\| \sum_{j=1}^N a_j \psi_j \right\|^2.
\]

The claim follows from here. \qed

A much stronger result (Proposition 1.12) can be proven for the case in which the matrix representation is derived using a specifically chosen orthonormal basis. However, the choice of this orthonormal basis requires the introduction of the frame operator in the following Sect. 1.4.2.
1.4.2 The Frame Operator

The frame operator might be considered the most important operator associated with a frame. Although it is “merely” the concatenation of the analysis and synthesis operators, it encodes crucial properties of the frame, as we will see in the sequel. Moreover, it is also fundamental for the reconstruction of signals from frame coefficients (see Theorem 1.8).

1.4.2.1 Fundamental properties

The precise definition of the frame operator associated with a frame is as follows.

Definition 1.17 Let \((\varphi_i)_{i=1}^M\) be a sequence of vectors in \(\mathcal{H}^N\) with associated analysis operator \(T\). Then the associated frame operator \(S : \mathcal{H}^N \to \mathcal{H}^N\) is defined by

\[
Sx := T^*Tx = \sum_{i=1}^M \langle x, \varphi_i \rangle \varphi_i, \quad x \in \mathcal{H}^N.
\]

A first observation concerning the close relation of the frame operator to frame properties is the following lemma.

Lemma 1.6 Let \((\varphi_i)_{i=1}^M\) be a sequence of vectors in \(\mathcal{H}^N\) with associated frame operator \(S\). Then, for all \(x \in \mathcal{H}^N\),

\[
\langle Sx, x \rangle = \sum_{i=1}^M |\langle x, \varphi_i \rangle|^2.
\]

Proof The proof follows directly from \(\langle Ax, x \rangle = \langle T^*Tx, x \rangle = \|Tx\|^2\) and Lemma 1.3(i).

Clearly, the frame operator \(S = T^*T\) is self-adjoint and positive. The most fundamental property of the frame operator—if the underlying sequence of vectors forms a frame—is its invertibility, which is crucial for the reconstruction formula.

Theorem 1.4 The frame operator \(S\) of a frame \((\varphi_i)_{i=1}^M\) for \(\mathcal{H}^N\) with frame bounds \(A\) and \(B\) is a positive, self-adjoint invertible operator satisfying

\[
A \cdot \text{Id} \leq S \leq B \cdot \text{Id}.
\]

Proof By Lemma 1.6, we have

\[
\langle Ax, x \rangle = A\|x\|^2 \leq \sum_{i=1}^M |\langle x, \varphi_i \rangle|^2 = \langle Sx, x \rangle \leq B\|x\|^2 = \langle Bx, x \rangle \quad \text{for all } x \in \mathcal{H}^N.
\]

This implies the claimed inequality.
The following proposition follows directly from Proposition 1.9.

Proposition 1.10 Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with frame operator \(S\), and let \(F\) be an invertible operator on \(\mathcal{H}^N\). Then \((F\varphi_i)_{i=1}^M\) is a frame with frame operator \(FSF^*\).

1.4.2.2 The special case of tight frames

Tight frames can be characterized as those frames whose frame operator equals a positive multiple of the identity. The next result provides a variety of similarly frame-operator-inspired classifications.

Proposition 1.11 Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with analysis operator \(T\) and frame operator \(S\). Then the following conditions are equivalent.

(i) \((\varphi_i)_{i=1}^M\) is an \(A\)-tight frame for \(\mathcal{H}^N\).
(ii) \(S = A \cdot \text{Id}\).
(iii) For every \(x \in \mathcal{H}^N\),

\[
 x = A^{-1} \cdot \sum_{i=1}^M \langle x, \varphi_i \rangle \varphi_i.
\]

(iv) For every \(x \in \mathcal{H}^N\),

\[
 A\|x\|^2 = \sum_{i=1}^M |\langle x, \varphi_i \rangle|^2.
\]

(v) \(T/\sqrt{A}\) is an isometry.

Proof (i) \(\Leftrightarrow\) (ii) \(\Leftrightarrow\) (iii) \(\Leftrightarrow\) (iv) These are immediate from the definition of the frame operator and from Theorem 1.4.

(ii) \(\Leftrightarrow\) (v) This follows from the fact that \(T/\sqrt{A}\) is an isometry if and only if \(T^*T = A \cdot \text{Id}\). □

A similar result for the special case of a Parseval frame can be easily deduced from Proposition 1.11 by setting \(A = 1\).

1.4.2.3 Eigenvalues of the frame operator

Tight frames have the property that the eigenvalues of the associated frame operator all coincide. We next consider the general situation, i.e., frame operators with arbitrary eigenvalues.
The first and maybe even most important result shows that the largest and smallest eigenvalues of the frame operator are the optimal frame bounds of the frame. Optimality refers to the smallest upper frame bound and the largest lower frame bound.

Theorem 1.5 Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with frame operator \(S\) having eigenvalues \(\lambda_1 \geq \cdots \geq \lambda_N\). Then \(\lambda_1\) coincides with the optimal upper frame bound and \(\lambda_N\) is the optimal lower frame bound.

Proof Let \((e_i)_{i=1}^N\) denote the normalized eigenvectors of the frame operator \(S\) with respective eigenvalues \((\lambda_j)_{j=1}^N\) written in decreasing order. Let \(x \in \mathcal{H}^N\). Since \(x = \sum_{j=1}^M \langle x, e_j \rangle e_j\), we obtain

\[
Sx = \sum_{j=1}^N \lambda_j \langle x, e_j \rangle e_j.
\]

By Lemma 1.6, this implies

\[
\sum_{i=1}^M |\langle x, \varphi_i \rangle|^2 = \langle Sx, x \rangle = \left(\sum_{j=1}^N \lambda_j \langle x, e_j \rangle e_j, \sum_{j=1}^N \langle x, e_j \rangle e_j \right) = \sum_{j=1}^N \lambda_j |\langle x, e_j \rangle|^2 \leq \lambda_1 \sum_{j=1}^N |\langle x, e_j \rangle|^2 = \lambda_1 \|x\|^2.
\]

Thus \(B_{\text{op}} \leq \lambda_1\), where \(B_{\text{op}}\) denotes the optimal upper frame bound of the frame \((\varphi_i)_{i=1}^M\). The claim \(B_{\text{op}} = \lambda_1\) then follows from

\[
\sum_{i=1}^M |\langle e_1, \varphi_i \rangle|^2 = \langle Se_1, e_1 \rangle = \langle \lambda_1 e_1, e_1 \rangle = \lambda_1.
\]

The claim concerning the lower frame bound can be proven similarly. \(\square\)

From this result, we can now draw the following immediate conclusion about the Riesz bounds.

Corollary 1.6 Let \((\varphi_i)_{i=1}^N\) be a frame for \(\mathcal{H}^N\). Then the following statements hold.

(i) The optimal upper Riesz bound and the optimal upper frame bound of \((\varphi_i)_{i=1}^N\) coincide.

(ii) The optimal lower Riesz bound and the optimal lower frame bound of \((\varphi_i)_{i=1}^N\) coincide.
Proof Let T denote the analysis operator of $(\varphi_i)_{i=1}^N$ and S the associated frame operator having eigenvalues $(\lambda_i)_{i=1}^N$ written in decreasing order. We have

$$\lambda_1 = \|S\| = \|T^*T\| = \|T\|^2 = \|T^*\|^2$$

and

$$\lambda_N = \|S^{-1}\|^{-1} = \|(T^*T)^{-1}\|^{-1} = \|(T^*)^{-1}\|^{-2}.$$

Now, both claims follow from Theorem 1.5, Lemma 1.4, and Proposition 1.5.

The next theorem reveals a relation between the frame vectors and the eigenvalues and eigenvectors of the associated frame operator.

Theorem 1.6 Let $(\varphi_i)_{i=1}^M$ be a frame for \mathcal{H}^N with frame operator S having normalized eigenvectors $(e_j)_{j=1}^N$ and respective eigenvalues $(\lambda_j)_{j=1}^N$. Then for all $j = 1, 2, \ldots, N$ we have

$$\lambda_j = \sum_{i=1}^M |\langle e_j, \varphi_i \rangle|^2.$$

In particular,

$$\text{Tr } S = \sum_{j=1}^N \lambda_j = \sum_{i=1}^M \|\varphi_i\|^2.$$

Proof This follows from $\lambda_j = \langle Se_j, e_j \rangle$ for all $j = 1, \ldots, N$ and Lemma 1.6. □

1.4.2.4 Structure of the synthesis matrix

As already promised in Sect. 1.4.1, we now apply the previously derived results to obtain a complete characterization of the synthesis matrix of a frame in terms of the frame operator.

Proposition 1.12 Let $T : \mathcal{H}^N \to \ell_2^M$ be a linear operator, let $(e_j)_{j=1}^N$ be an orthonormal basis of \mathcal{H}^N, and let $(\lambda_j)_{j=1}^N$ be a sequence of positive numbers. By A denote the $N \times M$ matrix representation of T^* with respect to $(e_j)_{j=1}^N$ (and the standard basis $(\hat{e}_i)_{i=1}^M$ of ℓ_2^M). Then the following conditions are equivalent.

(i) $(T^*\hat{e}_i)_{i=1}^M$ forms a frame for \mathcal{H}^N whose frame operator has eigenvectors $(e_j)_{j=1}^N$ and associated eigenvalues $(\lambda_j)_{j=1}^N$.

(ii) The rows of A are orthogonal, and the j-th row square sums to λ_j.

(iii) The columns of A form a frame for ℓ_2^N, and $AA^* = \text{diag}(\lambda_1, \ldots, \lambda_N)$.

Proof Let \((f_j)_{j=1}^N\) be the standard basis of \(\ell_2^N\) and denote by \(U : \ell_2^N \to \mathcal{H}^N\) the unitary operator which maps \(f_j\) to \(e_j\). Then \(T^* = UA\).

(i)\(\Rightarrow\)(ii) For \(j, k \in \{1, \ldots, N\}\) we have

\[
\langle A^* f_j, A^* f_k \rangle = \langle TU f_j, TU f_k \rangle = \langle T^* T e_j, e_k \rangle = \lambda_j \delta_{jk},
\]

which is equivalent to (ii).

(ii)\(\Rightarrow\)(iii) Since the rows of \(A\) are orthogonal, we have \(\text{rank } A = N\), which implies that the columns of \(A\) form a frame for \(\ell_2^N\). The rest follows from \(\langle AA^* f_j, f_k \rangle = \langle A^* f_j, A^* f_k \rangle = \lambda_j \delta_{jk}\) for \(j, k = 1, \ldots, N\).

(iii)\(\Rightarrow\)(i) Since \((A \hat{e}_i)_{i=1}^M\) is a spanning set for \(\ell_2^N\) and \(T^* = UA\), it follows that \((T^* \hat{e}_i)_{i=1}^M\) forms a frame for \(\mathcal{H}^N\). Its analysis operator is given by \(T\), since for all \(x \in \mathcal{H}^N\),

\[
[(x, T^* \hat{e}_i)]_{i=1}^M = [(Tx, \hat{e}_i)]_{i=1}^M = Tx.
\]

Moreover,

\[
T^* T e_j = U A A^* U^* e_j = U \text{diag}(\lambda_1, \ldots, \lambda_N) f_j = \lambda_j U f_j = \lambda_j e_j,
\]

which completes the proof. \(\square\)

1.4.3 Gramian Operator

Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with analysis operator \(T\). The previous subsection was concerned with properties of the frame operator defined by \(S = T^* T : \mathcal{H}^N \to \mathcal{H}^N\). Of particular interest is also the operator generated by first applying the synthesis and then the analysis operator. Let us first state the precise definition before discussing its importance.

Definition 1.18 Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with analysis operator \(T\). Then the operator \(G : \ell_2^M \to \ell_2^M\) defined by

\[
G(a_i)_{i=1}^M = T T^* (a_i)_{i=1}^M = \left(\sum_{i=1}^M a_i \langle \varphi_i, \varphi_k \rangle \right)_{k=1}^M = \sum_{i=1}^M a_i \langle \varphi_i, \varphi_k \rangle_{k=1}^M
\]

is called the Gramian (operator) of the frame \((\varphi_i)_{i=1}^M\).

Note that the (canonical) matrix representation of the Gramian of a frame \((\varphi_i)_{i=1}^M\) for \(\mathcal{H}^N\) (which will also be called the Gramian matrix) is given by

\[
\begin{bmatrix}
\langle \varphi_1, \varphi_1 \rangle & \langle \varphi_1, \varphi_2 \rangle & \cdots & \langle \varphi_1, \varphi_M \rangle \\
\langle \varphi_2, \varphi_1 \rangle & \langle \varphi_2, \varphi_2 \rangle & \cdots & \langle \varphi_2, \varphi_M \rangle \\
\vdots & \vdots & \ddots & \vdots \\
\langle \varphi_M, \varphi_1 \rangle & \langle \varphi_M, \varphi_2 \rangle & \cdots & \langle \varphi_M, \varphi_M \rangle \\
\end{bmatrix}.
\]
One property of the Gramian is immediate. In fact, if the frame is unit norm, then the entries of the Gramian matrix are exactly the cosines of the angles between the frame vectors. Hence, for instance, if a frame is equiangular, then all off-diagonal entries of the Gramian matrix have the same modulus.

The fundamental properties of the Gramian operator are collected in the following result.

Theorem 1.7 Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with analysis operator \(T\), frame operator \(S\), and Gramian operator \(G\). Then the following statements hold.

(i) An operator \(U\) on \(\mathcal{H}^N\) is unitary if and only if the Gramian of \((U\varphi_i)_{i=1}^M\) coincides with \(G\).

(ii) The nonzero eigenvalues of \(G\) and \(S\) coincide.

(iii) \((\varphi_i)_{i=1}^M\) is a Parseval frame if and only if \(G\) is an orthogonal projection of rank \(N\) (namely onto the range of \(T\)).

(iv) \(G\) is invertible if and only if \(M = N\).

Proof (i) This follows immediately from the fact that the entries of the Gramian matrix for \((U\varphi_i)_{i=1}^M\) are of the form \(\langle U\varphi_i, U\varphi_j \rangle\).

(ii) Since \(TT^*\) and \(T^*T\) have the same nonzero eigenvalues (see Proposition 1.7), the same is true for \(G\) and \(S\).

(iii) It is immediate to prove that \(G\) is self-adjoint and has rank \(N\). Since \(T\) is injective, \(T^*\) is surjective, and

\[
G^2 = (TT^*)(TT^*) = T(T^*T)T^*,
\]

it follows that \(G\) is an orthogonal projection if and only if \(T^*T = Id\), which is equivalent to the frame being Parseval.

(iv) This is immediate by (ii). \(\square\)

1.5 Reconstruction from Frame Coefficients

The analysis of a signal is typically performed by merely considering its frame coefficients. However, if the task is transmission of a signal, the ability to reconstruct the signal from its frame coefficients and also to do so efficiently becomes crucial. Reconstruction from coefficients with respect to an orthonormal basis was discussed in Corollary 1.1. However, reconstruction from coefficients with respect to a redundant system is much more delicate and requires the utilization of another frame, called the dual frame. If computing such a dual frame is computationally too complex, a circumvention of this problem is the frame algorithm.

1.5.1 Exact Reconstruction

We start by stating an exact reconstruction formula.
Theorem 1.8 Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with frame operator \(S\). Then, for every \(x \in \mathcal{H}^N\), we have

\[
x = \sum_{i=1}^M \langle x, \varphi_i \rangle S^{-1} \varphi_i = \sum_{i=1}^M \langle x, S^{-1} \varphi_i \rangle \varphi_i.
\]

Proof The proof follows directly from the definition of the frame operator in Definition 1.17 by writing \(x = S^{-1} Sx\) and \(x = S S^{-1} x\).

Notice that the first formula can be interpreted as a reconstruction strategy, whereas the second formula has the flavor of a decomposition. We further observe that the sequence \((S^{-1} \varphi_i)_{i=1}^M\) plays a crucial role in the formulas in Theorem 1.8. The next result shows that this sequence indeed also constitutes a frame.

Proposition 1.13 Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with frame bounds \(A\) and \(B\) and with frame operator \(S\). Then the sequence \((S^{-1} \varphi_i)_{i=1}^M\) is a frame for \(\mathcal{H}^N\) with frame bounds \(B^{-1}\) and \(A^{-1}\) and with frame operator \(S^{-1}\).

Proof By Proposition 1.10, the sequence \((S^{-1} \varphi_i)_{i=1}^M\) forms a frame for \(\mathcal{H}^N\) with associated frame operator \(S^{-1} S (S^{-1})^* = S^{-1}\). This in turn yields the frame bounds \(B^{-1}\) and \(A^{-1}\).

This new frame is called the canonical dual frame. In the sequel, we will discuss that other dual frames may also be utilized for reconstruction.

Definition 1.19 Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with frame operator denoted by \(S\). Then \((S^{-1} \varphi_i)_{i=1}^M\) is called the canonical dual frame for \((\varphi_i)_{i=1}^M\).

The canonical dual frame of a Parseval frame is now easily determined by Proposition 1.13.

Corollary 1.7 Let \((\varphi_i)_{i=1}^M\) be a Parseval frame for \(\mathcal{H}^N\). Then its canonical dual frame is the frame \((\varphi_i)_{i=1}^M\) itself, and the reconstruction formula in Theorem 1.8 reads

\[
x = \sum_{i=1}^M \langle x, \varphi_i \rangle \varphi_i, \quad x \in \mathcal{H}^N.
\]

As an application of the above reconstruction formula for Parseval frames, we prove the following proposition which again shows the close relation between Parseval frames and orthonormal bases already indicated in Lemma 1.2.
Proposition 1.14 (Trace Formula for Parseval Frames) Let \((\varphi_i)_{i=1}^M\) be a Parseval frame for \(\mathcal{H}^N\), and let \(F\) be a linear operator on \(\mathcal{H}^N\). Then

\[
\text{Tr}(F) = \sum_{i=1}^M \langle F\varphi_i, \varphi_i \rangle.
\]

Proof Let \((e_j)_{j=1}^N\) be an orthonormal basis for \(\mathcal{H}^N\). Then, by definition,

\[
\text{Tr}(F) = \sum_{j=1}^N \langle Fe_j, e_j \rangle.
\]

This implies

\[
\text{Tr}(F) = \sum_{j=1}^N \left(\sum_{i=1}^M \langle Fe_j, \varphi_i \rangle \varphi_i, e_j \right) = \sum_{j=1}^N \sum_{i=1}^M \langle e_j, F^*\varphi_i \rangle \langle \varphi_i, e_j \rangle
\]

\[
= \sum_{i=1}^M \left(\sum_{j=1}^N \langle \varphi_i, e_j \rangle e_j, F^*\varphi_i \right) = \sum_{i=1}^M \langle \varphi_i, F^*\varphi_i \rangle = \sum_{i=1}^M \langle F\varphi_i, \varphi_i \rangle.
\]

\(\square\)

As already announced, many other dual frames for reconstruction exist. We next provide a precise definition.

Definition 1.20 Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\). Then a frame \((\psi_i)_{i=1}^M\) is called a **dual frame** for \((\varphi_i)_{i=1}^M\), if

\[
x = \sum_{i=1}^M \langle x, \varphi_i \rangle \psi_i \quad \text{for all } x \in \mathcal{H}^N.
\]

Dual frames, which do not coincide with the canonical dual frame, are often coined **alternate dual frames**.

Similar to the different forms of the reconstruction formula in Theorem 1.8, dual frames can also achieve reconstruction in different ways.

Proposition 1.15 Let \((\varphi_i)_{i=1}^M\) and \((\psi_i)_{i=1}^M\) be frames for \(\mathcal{H}^N\) and let \(T\) and \(\tilde{T}\) be the analysis operators of \((\varphi_i)_{i=1}^M\) and \((\psi_i)_{i=1}^M\), respectively. Then the following conditions are equivalent.

(i) We have \(x = \sum_{i=1}^M \langle x, \psi_i \rangle \varphi_i \) for all \(x \in \mathcal{H}^N\).

(ii) We have \(x = \sum_{i=1}^M \langle x, \varphi_i \rangle \psi_i \) for all \(x \in \mathcal{H}^N\).

(iii) We have \(\langle x, y \rangle = \sum_{i=1}^M \langle x, \varphi_i \rangle \langle \psi_i, y \rangle \) for all \(x, y \in \mathcal{H}^N\).

(iv) \(T^*\tilde{T} = \text{Id} \) and \(\tilde{T}^*T = \text{Id}\).
Proof Clearly (i) is equivalent to $\tilde{T}^*\tilde{T} = \text{Id}$, which holds if and only if $\tilde{T}^*T = \text{Id}$. The equivalence of (iii) can be derived in a similar way. \hfill \Box

One might ask what distinguishes the canonical dual frame from the alternate dual frames besides its explicit formula in terms of the initial frame. Another seemingly different question is which properties of the coefficient sequence in the decomposition of some signal x in terms of the frame (see Theorem 1.8),

$$x = \sum_{i=1}^{M} (x, S^{-1}\varphi_i)\varphi_i,$$

uniquely distinguishes it from other coefficient sequences; redundancy allows infinitely many coefficient sequences. Interestingly, the next result answers both questions simultaneously by stating that this coefficient sequence has minimal ℓ_2-norm among all sequences—in particular those, with respect to alternate dual frames—representing x.

Proposition 1.16 Let $(\varphi_i)_{i=1}^{M}$ be a frame for \mathcal{H}^N with frame operator S, and let $x \in \mathcal{H}^N$. If $(a_i)_{i=1}^{M}$ are scalars such that $x = \sum_{i=1}^{M} a_i\varphi_i$, then

$$\sum_{i=1}^{M} |a_i|^2 = \sum_{i=1}^{M} \| (x, S^{-1}\varphi_i) \|^2 + \sum_{i=1}^{M} |a_i - (x, S^{-1}\varphi_i)|^2.$$

Proof Letting T denote the analysis operator of $(\varphi_i)_{i=1}^{M}$, we obtain

$$\left((x, S^{-1}\varphi_i) \right)_{i=1}^{M} = \left((S^{-1}x, \varphi_i) \right)_{i=1}^{M} \in \text{ran} T.$$

Since $x = \sum_{i=1}^{M} a_i\varphi_i$, it follows that

$$\left(a_i - (x, S^{-1}\varphi_i) \right)_{i=1}^{M} \in \ker T^* = (\text{ran} T)^\perp.$$

Considering the decomposition

$$(a_i)_{i=1}^{M} = \left((x, S^{-1}\varphi_i) \right)_{i=1}^{M} + \left(a_i - (x, S^{-1}\varphi_i) \right)_{i=1}^{M},$$

the claim is immediate. \hfill \Box

Corollary 1.8 Let $(\varphi_i)_{i=1}^{M}$ be a frame for \mathcal{H}^N, and let $(\psi_i)_{i=1}^{M}$ be an associated alternate dual frame. Then, for all $x \in \mathcal{H}^N$,

$$\| \left((x, S^{-1}\varphi_i) \right)_{i=1}^{M} \|_2 \leq \| (x, \psi_i) \|_2.$$

We wish to mention that sequences which are minimal in the ℓ_1-norm also play a crucial role to date due to the fact that the ℓ_1-norm promotes sparsity. The interested reader is referred to Chap. 9 for further details.
1.5.2 Properties of Dual Frames

While we focused on properties of the canonical dual frame in the last subsection, we next discuss properties shared by all dual frames. The first question arising is: How do you characterize all dual frames? A comprehensive answer is provided by the following result.

Proposition 1.17 Let \((\varphi_i)_{i=1}^M\) be a frame for \(H^N\) with analysis operator \(T\) and frame operator \(S\). Then the following conditions are equivalent.

(i) \((\psi_i)_{i=1}^M\) is a dual frame for \((\varphi_i)_{i=1}^M\).
(ii) The analysis operator \(T_1\) of the sequence \((\psi_i - S^{-1}\varphi_i)_{i=1}^M\) satisfies \(\text{ran } T \perp \text{ran } T_1\).

Proof We set \(\tilde{\varphi}_i := \psi_i - S^{-1}\varphi_i\) for \(i = 1, \ldots, M\) and note that

\[
\sum_{i=1}^M \langle x, \psi_i \rangle \varphi_i = \sum_{i=1}^M \langle x, \tilde{\varphi}_i + S^{-1}\varphi_i \rangle \varphi_i = x + \sum_{i=1}^M \langle x, \tilde{\varphi}_i \rangle \varphi_i = x + T^*T_1x
\]

holds for all \(x \in H^N\). Hence, \((\psi_i)_{i=1}^M\) is a dual frame for \((\varphi_i)_{i=1}^M\) if and only if \(T^*T_1 = 0\). But this is equivalent to (ii).

From this result, we have the following corollary which provides a general formula for all dual frames.

Corollary 1.9 Let \((\varphi_i)_{i=1}^M\) be a frame for \(H^N\) with analysis operator \(T\) and frame operator \(S\) with associated normalized eigenvectors \((e_j)_{j=1}^N\) and respective eigenvalues \((\lambda_j)_{j=1}^N\). Then every dual frame \((\psi_i)_{i=1}^M\) for \((\varphi_i)_{i=1}^M\) is of the form

\[
\psi_i = \sum_{j=1}^N \left(\frac{1}{\lambda_j} \langle \varphi_i, e_j \rangle + h_{ij} \right) e_j, \quad i = 1, \ldots, M,
\]

where each \((h_{ij})_{i=1}^M, j = 1, \ldots, N,\) is an element of \((\text{ran } T)^\perp\).

Proof If \(\psi_i, i = 1, \ldots, M,\) is of the given form with sequences \((h_{ij})_{i=1}^M \in \ell_2^M, j = 1, \ldots, N,\) then \(\psi_i = S^{-1}\varphi_i + \tilde{\varphi}_i,\) where \(\tilde{\varphi}_i := \sum_{j=1}^N h_{ij} e_j, i = 1, \ldots, M.\) The analysis operator \(\tilde{T}\) of \((\tilde{\varphi}_i)_{i=1}^M\) satisfies \(\tilde{T}e_j = (h_{ij})_{i=1}^M.\) The claim follows from this observation.

As a second corollary, we derive a characterization of all frames which have a uniquely determined dual frame. It is evident that this unique dual frame coincides with the canonical dual frame.
1.5.3 Frame Algorithms

Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with frame operator \(S\), and assume we are given the image of a signal \(x \in \mathcal{H}^N\) under the analysis operator, i.e., the sequence \((\langle x, \varphi_i \rangle)_{i=1}^M\) in \(\ell_2^M\). Theorem 1.8 has already provided us with the reconstruction formula

\[
x = \sum_{i=1}^M \langle x, \varphi_i \rangle S^{-1} \varphi_i
\]

by using the canonical dual frame. Since inversion is typically not only computationally expensive, but also numerically instable, this formula might not be utilizable in practice.

To resolve this problem, we will next discuss three iterative methods to derive a converging sequence of approximations of \(x\) from the knowledge of \((\langle x, \varphi_i \rangle)_{i=1}^M\). The first on our list is called the frame algorithm.

Proposition 1.18 (Frame Algorithm) Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with frame bounds \(A, B\) and frame operator \(S\). Given a signal \(x \in \mathcal{H}^N\), define a sequence \((y_j)_{j=0}^\infty\) in \(\mathcal{H}^N\) by

\[
y_0 = 0, \quad y_j = y_{j-1} + \frac{2}{A+B} S(x - y_{j-1}) \quad \text{for all } j \geq 1.
\]

Then \((y_j)_{j=0}^\infty\) converges to \(x\) in \(\mathcal{H}^N\), and the rate of convergence is

\[
\|x - y_j\| \leq \left(\frac{B-A}{B+A}\right)^j \|x\|, \quad j \geq 0.
\]

Proof First, for all \(x \in \mathcal{H}^N\), we have

\[
\left(\left(Id - \frac{2}{A+B}S\right)x, x\right) = \|x\|^2 - \frac{2}{A+B} \sum_{i=1}^M |\langle x, \varphi_i \rangle|^2 \leq \|x\|^2 - \frac{2A}{A+B} \|x\|^2
\]

\[
= \frac{B-A}{A+B} \|x\|^2.
\]

Similarly, we obtain

\[
-\frac{B-A}{B+A} \|x\|^2 \leq \left(\left(Id - \frac{2}{A+B}S\right)x, x\right).
\]
which yields
\[\left\| \text{Id} - \frac{2}{A+B} S \right\| \leq \frac{B-A}{A+B}. \] (1.3)

By the definition of \(y_j \), for any \(j \geq 0 \),
\[x - y_j = x - y_{j-1} - \frac{2}{A+B} S(x - y_{j-1}) = \left(\text{Id} - \frac{2}{A+B} S \right)(x - y_{j-1}). \]

Iterating this calculation, we derive
\[x - y_j = \left(\text{Id} - \frac{2}{A+B} S \right)^j (x - y_0), \quad \text{for all } j \geq 0. \]

Thus, by (1.3),
\[\| x - y_j \| = \left\| \left(\text{Id} - \frac{2}{A+B} S \right)^j (x - y_0) \right\| \leq \left\| \text{Id} - \frac{2}{A+B} S \right\|^j \| x - y_0 \| \leq \left(\frac{B-A}{A+B} \right)^j \| x \|. \]

The result is proved.

Note that, although the iteration formula in the frame algorithm contains \(x \), the algorithm does not depend on the knowledge of \(x \) but only on the frame coefficients \((\langle x, \varphi_i \rangle)_{i=1}^M \), since \(y_j = y_{j-1} + \frac{2}{A+B} (\sum_i \langle x, \varphi_i \rangle \varphi_i - Sy_{j-1}) \).

One drawback of the frame algorithm is the fact that not only does the convergence rate depend on the ratio of the frame bounds, i.e., the condition number of the frame, but it depends on it in a highly sensitive way. This causes the problem that a large ratio of the frame bounds leads to very slow convergence.

To tackle this problem, in [96], the Chebyshev method and the conjugate gradient methods were introduced, which are significantly better adapted to frame theory and lead to faster convergence than the frame algorithm. These two algorithms will next be discussed. We start with the Chebyshev algorithm.

Proposition 1.19 (Chebyshev Algorithm, [96]) Let \((\varphi_i)_{i=1}^M\) be a frame for \(H^N \) with frame bounds \(A, B \) and frame operator \(S \), and set
\[\rho := \frac{B-A}{B+A} \quad \text{and} \quad \sigma := \frac{\sqrt{B} - \sqrt{A}}{\sqrt{B} + \sqrt{A}}. \]
Given a signal $x \in \mathcal{H}^N$, define a sequence $(y_j)_{j=0}^\infty$ in \mathcal{H}^N and corresponding scalars $(\lambda_j)_{j=1}^\infty$ by

$$y_0 = 0, \quad y_1 = \frac{2}{B + A} Sx, \quad \text{and} \quad \lambda_1 = 2,$$

and for $j \geq 2$, set

$$\lambda_j = \frac{1}{1 - \frac{\sigma^2}{4} \lambda_{j-1}} \quad \text{and} \quad y_j = \lambda_j \left(y_{j-1} - y_{j-2} + \frac{2}{B + A} S(x - y_{j-1}) \right) + y_{j-2}.$$

Then $(y_j)_{j=0}^\infty$ converges to x in \mathcal{H}^N, and the rate of convergence is

$$\|x - y_j\| \leq \frac{2\sigma^j}{1 + \sigma^2 j} \|x\|.$$

The advantage of the conjugate gradient method, which we will present next, is the fact that it does not require knowledge of the frame bounds. However, as before, the rate of convergence certainly does depend on them.

Proposition 1.20 (Conjugate Gradient Method, [96]) Let $(\varphi_i)_{i=1}^M$ be a frame for \mathcal{H}^N with frame operator S. Given a signal $x \in \mathcal{H}^N$, define three sequences $(y_j)_{j=0}^\infty$, $(r_j)_{j=0}^\infty$, and $(p_j)_{j=-1}^\infty$ in \mathcal{H}^N and corresponding scalars $(\lambda_j)_{j=-1}^\infty$ by

$$y_0 = 0, \quad r_0 = p_0 = Sx, \quad \text{and} \quad p_{-1} = 0,$$

and for $j \geq 0$, set

$$\lambda_j = \frac{\langle r_j, p_j \rangle}{\langle p_j, Sp_j \rangle}, \quad y_{j+1} = y_j + \lambda_j p_j, \quad r_{j+1} = r_j - \lambda_j Sp_j,$$

and

$$p_{j+1} = Sp_j - \frac{\langle Sp_j, Sp_j \rangle}{\langle p_j, Sp_j \rangle} p_j - \frac{\langle Sp_j, Sp_{j-1} \rangle}{\langle p_{j-1}, Sp_{j-1} \rangle} p_{j-1}.$$

Then $(y_j)_{j=0}^\infty$ converges to x in \mathcal{H}^N, and the rate of convergence is

$$\|x - y_j\| \leq \frac{2\sigma^j}{1 + \sigma^2 j} \|x\| \quad \text{with} \quad \sigma = \frac{\sqrt{B} - \sqrt{A}}{\sqrt{B} + \sqrt{A}},$$

and $\| \cdot \|$ is the norm on \mathcal{H}^N given by $\|x\| = \langle x, Sx \rangle^{1/2} = \|S^{1/2}x\|$, $x \in \mathcal{H}^N$.

1.6 Construction of Frames

Applications often require the construction of frames with certain desired properties. As a result of the large diversity of these desiderata, there exists a large number of
construction methods [36, 58]. In this section, we will present a prominent selection of these. For further details and results, for example, the construction of frames through Spectral Tetris [30, 43, 46] and through eigensteps [29], we refer to Chap. 2.

1.6.1 Tight and Parseval Frames

Tight frames are particularly desirable due to the fact that the reconstruction of a signal from tight frame coefficients is numerically optimally stable, as discussed in Sect. 1.5. Most of the constructions we will present modify a given frame so that the result is a tight frame.

We start with the most basic result for generating a Parseval frame, which is the application of $S^{-1/2}$. S being the frame operator.

Lemma 1.7 If $(\varphi_i)_{i=1}^M$ is a frame for \mathcal{H}^N with frame operator S, then $(S^{-1/2}\varphi_i)_{i=1}^M$ is a Parseval frame.

Proof By Proposition 1.10, the frame operator for $(S^{-1/2}\varphi_i)_{i=1}^M$ is $S^{-1/2}SS^{-1/2} = Id$. □

Although this result is impressive in its simplicity, from a practical point of view it has various problems, the most significant being that this procedure requires inversion of the frame operator.

However, Lemma 1.7 can certainly be applied if all eigenvalues and respective eigenvectors of the frame operator are given. If only information on the eigenspace corresponding to the largest eigenvalue is missing, then there exists a simple practical method to generate a tight frame by adding a provably minimal number of vectors.

Proposition 1.21 Let $(\varphi_i)_{i=1}^M$ be any family of vectors in \mathcal{H}^N with frame operator S having eigenvectors $(e_j)_{j=1}^N$ and respective eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$. Let $1 \leq k \leq N$ be such that $\lambda_1 = \lambda_2 = \cdots = \lambda_k > \lambda_{k+1}$. Then

$$(\varphi_i)_{i=1}^M \cup \left((\lambda_1 - \lambda_j)^{1/2} e_j \right)_{j=k+1}^N$$

forms a λ_1-tight frame for \mathcal{H}^N.

Moreover, $N - k$ is the least number of vectors which can be added to $(\varphi_i)_{i=1}^M$ to obtain a tight frame.

Proof A straightforward calculation shows that the sequence in (1.4) is indeed a λ_1-tight frame for \mathcal{H}^N.

For the moreover part, assume that there exist vectors $(\psi_j)_{j \in J}$ with frame operator S_1 satisfying that $(\varphi_i)_{i=1}^M \cup (\psi_j)_{j \in J}$ is an A-tight frame. This implies $A \geq \lambda_1$.
Now define S_2 to be the operator on \mathcal{H}^N given by

$$S_2e_j = \begin{cases} 0: & 1 \leq j \leq k, \\ (\lambda_1 - \lambda_j)e_j: & k + 1 \leq j \leq N. \end{cases}$$

It follows that $A \cdot Id = S + S_1$ and

$$S_1 = A \cdot Id - S \geq \lambda_1 Id - S = S_2.$$

Since S_2 has $N - k$ nonzero eigenvalues, S_1 also has at least $N - k$ nonzero eigenvalues. Hence $|J| \geq N - k$, showing that indeed $N - k$ added vectors is minimal. □

Before we delve into further explicit constructions, we need to first state some fundamental results on tight, and, in particular, Parseval frames.

The most basic invariance property a frame could have is invariance under orthogonal projections. The next result shows that this operation indeed maintains and may even improve the frame bounds. In particular, the orthogonal projection of a Parseval frame remains a Parseval frame.

Proposition 1.22 Let $(\varphi_i)_{i=1}^M$ be a frame for \mathcal{H}^N with frame bounds A, B, and let P be an orthogonal projection of \mathcal{H}^N onto a subspace \mathcal{W}. Then $(P\varphi_i)_{i=1}^M$ is a frame for \mathcal{W} with frame bounds A, B.

In particular, if $(\varphi_i)_{i=1}^M$ is a Parseval frame for \mathcal{H}^N and P is an orthogonal projection on \mathcal{H}^N onto \mathcal{W}, then $(P\varphi_i)_{i=1}^M$ is a Parseval frame for \mathcal{W}.

Proof For any $x \in \mathcal{W}$,

$$A\|x\|^2 = A\|Px\|^2 \leq \sum_{i=1}^M |\langle Px, \varphi_i \rangle|^2 = \sum_{i=1}^M |\langle x, P\varphi_i \rangle|^2 \leq B\|Px\|^2 = B\|x\|^2.$$

This proves the claim. The *in particular* part follows immediately. □

Proposition 1.22 immediately yields the following corollary.

Corollary 1.11 Let $(e_i)_{i=1}^N$ be an orthonormal basis for \mathcal{H}^N, and let P be an orthogonal projection of \mathcal{H}^N onto a subspace \mathcal{W}. Then $(Pe_i)_{i=1}^N$ is a Parseval frame for \mathcal{W}.

Corollary 1.11 can be interpreted in the following way: Given an $M \times M$ unitary matrix, if we select any N rows from the matrix, then the column vectors from these rows form a Parseval frame for \mathcal{H}^N. The next theorem, known as Naimark’s theorem, shows that indeed every Parseval frame can be obtained as the result of this kind of operation.
Theorem 1.9 (Naimark’s Theorem) Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with analysis operator \(T\), let \((e_i)_{i=1}^M\) be the standard basis of \(\ell_2^M\), and let \(P : \ell_2^M \to \ell_2^M\) be the orthogonal projection onto \(\text{ran} T\). Then the following conditions are equivalent.

(i) \((\varphi_i)_{i=1}^M\) is a Parseval frame for \(\mathcal{H}^N\).

(ii) For all \(i = 1, \ldots, M\), we have \(Pe_i = T\varphi_i\).

(iii) There exist \(\psi_1, \ldots, \psi_M \in \mathcal{H}^{M-N}\) such that \((\varphi_i \oplus \psi_i)_{i=1}^M\) is an orthonormal basis of \(\mathcal{H}^M\).

Moreover, if (iii) holds, then \((\psi_i)_{i=1}^M\) is a Parseval frame for \(\mathcal{H}^{M-N}\). If \((\psi'_i)_{i=1}^M\) is another Parseval frame as in (iii), then there exists a unique linear operator \(L\) on \(\mathcal{H}^{M-N}\) such that \(L\psi_i = \psi'_i\), \(i = 1, \ldots, M\), and \(L\) is unitary.

Proof (i)\(\iff\)(ii) By Theorem 1.7(iii) \((\varphi_i)_{i=1}^M\) is a Parseval frame if and only if \(TT^* = P\). Therefore, (i) and (ii) are equivalent due to \(T^*e_i = \varphi_i\) for all \(i = 1, \ldots, M\).

(i)\(\implies\)(iii) We set \(c_i := e_i - T\varphi_i\), \(i = 1, \ldots, M\). Then, by (ii), \(c_i \in (\text{ran} T)^\perp\) for all \(i\). Let \(\Phi : (\text{ran} T)^\perp \to \mathcal{H}^{M-N}\) be unitary and put \(\psi_i := \Phi c_i\), \(i = 1, \ldots, M\). Then, since \(T\) is isometric,

\[
\langle \varphi_i \oplus \psi_i, \varphi_k \oplus \psi_k \rangle = \langle \varphi_i, \varphi_k \rangle + \langle \psi_i, \psi_k \rangle = \langle T\varphi_i, T\psi_k \rangle + \langle c_i, c_k \rangle = \delta_{ik},
\]

which proves (iii).

(iii)\(\implies\)(i) This follows directly from Corollary 1.11.

Concerning the moreover part, it follows from Corollary 1.11 that \((\psi_i)_{i=1}^M\) is a Parseval frame for \(\mathcal{H}^{M-N}\). Let \((\psi'_i)_{i=1}^M\) be another Parseval frame as in (iii) and denote the analysis operators of \((\psi_i)_{i=1}^M\) and \((\psi'_i)_{i=1}^M\) by \(F\) and \(F'\), respectively. We make use of the decomposition \(\mathcal{H}^M = \mathcal{H}^N \oplus \mathcal{H}^{M-N}\). Note that both \(U := (T, F)\) and \(U' := (T, F')\) are unitary operators from \(\mathcal{H}^M\) onto \(\ell_2^M\). By \(P_{M-N}\) denote the projection of \(\mathcal{H}^M\) onto \(\mathcal{H}^{M-N}\) and set

\[
L := P_{M-N}U'^* U|_{\mathcal{H}^{M-N}} = P_{M-N}U'^* F.
\]

Let \(y \in \mathcal{H}^N\). Then, since \(U|_{\mathcal{H}^N} = U'|_{\mathcal{H}^N} = T\), we have \(P_{M-N}U'^* U y = P_{M-N} y = 0\). Hence,

\[
L\psi_i = P_{M-N}U'^* U(\varphi_i \oplus \psi_i) = P_{M-N}U'^* e_i = P_{M-N}(\varphi_i \oplus \psi_i) = \psi'_i.
\]

The uniqueness of \(L\) follows from the fact that both \((\psi_i)_{i=1}^M\) and \((\psi'_i)_{i=1}^M\) are spanning sets for \(\mathcal{H}^{M-N}\).

To show that \(L\) is unitary, we observe that, by Proposition 1.10, the frame operator of \((L\psi_i)_{i=1}^M\) is given by \(LL^*\). The claim \(LL^* = Id\) now follows from the fact that the frame operator of \((\psi'_i)_{i=1}^M\) is also the identity. \(\square\)

The simplest way to construct a frame from a given one is just to scale the frame vectors. Therefore, it seems desirable to have a characterization of the class of
frames which can be scaled to a Parseval frame or a tight frame (which is equivalent). We term such frames scalable.

Definition 1.21 A frame \((\varphi_i)_{i=1}^M\) for \(\mathcal{H}^N\) is called (strictly) scalable, if there exist nonnegative (respectively, positive) numbers \(a_1, \ldots, a_M\) such that \((a_i \varphi_i)_{i=1}^M\) is a Parseval frame.

The next result is closely related to Naimark’s theorem.

Theorem 1.10 \cite{116} Let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) with analysis operator \(T\). Then the following statements are equivalent.

(i) \((\varphi_i)_{i=1}^M\) is strictly scalable.

(ii) There exists a linear operator \(L : \mathcal{H}^{M-N} \to \ell_2^M\) such that \(TT^* + LL^*\) is a positive definite diagonal matrix.

(iii) There exists a sequence \((\psi_i)_{i=1}^M\) of vectors in \(\mathcal{H}^{M-N}\) such that \((\varphi_i \oplus \psi_i)_{i=1}^M\) forms a complete orthogonal system in \(\mathcal{H}^M\).

If \(\mathcal{H}^N\) is real, then the following result applies, which can be utilized to derive a geometric interpretation of scalability. For this we once more refer to \cite{116}.

Theorem 1.11 \cite{116} Let \(\mathcal{H}^N\) be real and let \((\varphi_i)_{i=1}^M\) be a frame for \(\mathcal{H}^N\) without zero vectors. Then the following statements are equivalent.

(i) \((\varphi_i)_{i=1}^M\) is not scalable.

(ii) There exists a self-adjoint operator \(Y\) on \(\mathcal{H}^N\) with \(\text{Tr}(Y) < 0\) and \(\langle Y \varphi_i, \varphi_i \rangle \geq 0\) for all \(i = 1, \ldots, M\).

(iii) There exists a self-adjoint operator \(Y\) on \(\mathcal{H}^N\) with \(\text{Tr}(Y) = 0\) and \(\langle Y \varphi_i, \varphi_i \rangle > 0\) for all \(i = 1, \ldots, M\).

We finish this subsection with an existence result of tight frames with prescribed norms of the frame vectors. Its proof in \cite{44} heavily relies on a deep understanding of the frame potential and is a pure existence proof. However, in special cases constructive methods are presented in \cite{56}.

Theorem 1.12 \cite{44} Let \(N \leq M\), and let \(a_1 \geq a_2 \geq \cdots \geq a_M\) be positive real numbers. Then the following conditions are equivalent.

(i) There exists a tight frame \((\varphi_i)_{i=1}^M\) for \(\mathcal{H}^N\) satisfying \(\|\varphi_i\| = a_i\) for all \(i = 1, 2, \ldots, M\).

(ii) For all \(1 \leq j < N\),

\[
a_j^2 \leq \frac{\sum_{i=j+1}^M a_i^2}{N-j}.
\]
(iii) We have
\[\sum_{i=1}^{M} a_i^2 \geq N a_1^2. \]

Equal norm tight frames are even more desirable, but are difficult to construct. A powerful method, called Spectral Tetris, for such constructions was recently derived in [46], see Chap. 2. This methodology even generates sparse frames [49], which reduce the computational complexity and also ensure high compressibility of the synthesis matrix—which then is a sparse matrix. However, we caution the reader that Spectral Tetris has the drawback that it often generates multiple copies of the same frame vector. For practical applications, this is typically avoided, since the frame coefficients associated with a repeated frame vector do not provide any new information about the incoming signal.

1.6.2 Frames with Given Frame Operator

It is often desirable not only to construct tight frames, but more generally to construct frames with a prescribed frame operator. Typically in such a case the eigenvalues of the frame operator are given assuming that the eigenvectors are the standard basis. Applications include, for instance, noise reduction if colored noise is present.

The first comprehensive results containing necessary and sufficient conditions for the existence and the construction of tight frames with frame vectors of a prescribed norm were derived in [44] and [56]; see also Theorem 1.12. The result in [44] was then extended in [57] to the following theorem, which now also includes prescribing the eigenvalues of the frame operator.

Theorem 1.13 [57] Let \(S \) be a positive self-adjoint operator on \(\mathcal{H}^N \), and let \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N > 0 \) be the eigenvalues of \(S \). Further, let \(M \geq N \), and let \(c_1 \geq c_2 \geq \cdots \geq c_M \) be positive real numbers. Then the following conditions are equivalent:

(i) There exists a frame \((\varphi_i)_{i=1}^{M} \) for \(\mathcal{H}^N \) with frame operator \(S \) satisfying \(\|\varphi_i\| = c_i \) for all \(i = 1, 2, \ldots, M \).

(ii) For every \(1 \leq k \leq N \), we have
\[\sum_{j=1}^{k} c_j^2 \leq \sum_{j=1}^{k} \lambda_j \quad \text{and} \quad \sum_{i=1}^{M} c_i^2 = \sum_{j=1}^{N} \lambda_j. \]

However, it is often preferable to utilize equal norm frames, since then, roughly speaking, each vector provides the same coverage for the space. In [57], it was shown that there always exists an equal norm frame with a prescribed frame operator. This is the content of the next result.
Theorem 1.14 [57] For every $M \geq N$ and every invertible positive self-adjoint operator S on \mathcal{H}^N there exists an equal norm frame for \mathcal{H}^N with M elements and frame operator S. In particular, there exist equal norm Parseval frames with M elements in \mathcal{H}^N for every $N \leq M$.

Proof We define the norm of the to-be-constructed frame to be c, where

$$c^2 = \frac{1}{M} \sum_{j=1}^{N} \lambda_j.$$

It is sufficient to prove that the conditions in Theorem 1.13(ii) are satisfied for $c_i = c$ for all $i = 1, 2, \ldots, M$. The definition of c immediately implies the second condition.

For the first condition, we observe that

$$c_1^2 = c^2 = \frac{1}{M} \sum_{j=1}^{N} \lambda_j \leq \lambda_1.$$

Hence this condition holds for $j = 1$. Now, toward a contradiction, assume that there exists some $k \in \{2, \ldots, N\}$ for which this condition fails for the first time by counting from 1 upward, i.e.,

$$\sum_{j=1}^{k-1} c_j^2 = (k-1)c^2 \leq \sum_{j=1}^{k-1} \lambda_j, \quad \text{but} \quad \sum_{j=1}^{k} c_j^2 = kc^2 > \sum_{j=1}^{k} \lambda_j.$$

This implies

$$c^2 \geq \lambda_k \quad \text{and thus} \quad c^2 \geq \lambda_j \quad \text{for all} \quad k + 1 \leq j \leq N.$$

Hence,

$$Mc^2 \geq kc^2 + (N-k)c^2 > \sum_{j=1}^{k} \lambda_j + \sum_{j=k+1}^{N} c_j^2 \geq \sum_{j=1}^{N} \lambda_j + \sum_{j=k+1}^{N} \lambda_j = \sum_{j=1}^{N} \lambda_j,$$

which is a contradiction. The proof is completed.

By an extension of the aforementioned algorithm Spectral Tetris [30, 43, 47, 49] to non-tight frames, Theorem 1.14 can be constructively realized. The interested reader is referred to Chap. 2. We also mention that an extension of Spectral Tetris to construct fusion frames (cf. Sect. 1.9) exists. Further details on this topic are contained in Chap. 13.

1.6.3 Full Spark Frames

Generic frames are those optimally resilient against erasures. The precise definition is as follows.
Definition 1.22 A frame $(\varphi_i)^M_{i=1}$ for \mathcal{H}^N is called a full spark frame, if the erasure of any $M - N$ vectors leaves a frame; i.e., for any $I \subset \{1, \ldots, M\}$, $|I| = M - N$, the sequence $(\varphi_i)^M_{i=1, i \notin I}$ is still a frame for \mathcal{H}^N.

It is evident that such frames are of significant importance for applications. A first study was undertaken in [126]. Recently, using methods from algebraic geometry, equivalence classes of full spark frames were extensively studied [26, 80, 135]. It was shown, for instance, that equivalence classes of full spark frames are dense in the Grassmannian variety. For the readers to be able to appreciate these results, Chap. 4 provides an introduction to algebraic geometry followed by a survey about this and related results.

1.7 Frame Properties

As already discussed, crucial properties of frames such as erasure robustness, resilience against noise, or sparse approximation properties originate from spanning and independence properties of frames [13], which are typically based on the Rado-Horn theorem [103, 128] and its redundant version [54]. These, in turn, are only possible because of their redundancy [12]. This section will shed some light on these issues.

1.7.1 Spanning and Independence

As is intuitively clear, the frame bounds imply certain spanning properties which are detailed in the following result. This theorem should be compared to Lemma 1.2, which presented some first statements about spanning sets in frames.

Theorem 1.15 Let $(\varphi_i)^M_{i=1}$ be a frame for \mathcal{H}^N with frame bounds A and B. Then the following holds.

(i) $\|\varphi_i\|^2 \leq B_{\text{op}}$ for all $i = 1, 2, \ldots, M$.

(ii) If, for some $i_0 \in \{1, \ldots, M\}$, we have $\|\varphi_{i_0}\|^2 = B_{\text{op}}$, then $\varphi_{i_0} \perp \text{span}\{\varphi_i\}^M_{i=1, i \neq i_0}$.

(iii) If, for some $i_0 \in \{1, \ldots, M\}$, we have $\|\varphi_{i_0}\|^2 < A_{\text{op}}$, then $\varphi_{i_0} \in \text{span}\{\varphi_i\}^M_{i=1, i \neq i_0}$.

In particular, if $(\varphi_i)^M_{i=1}$ is a Parseval frame, then either $\varphi_{i_0} \perp \text{span}\{\varphi_i\}^M_{i=1, i \neq i_0}$ (and in this case $\|\varphi_i\| = 1$) or $\|\varphi_{i_0}\| < 1$.

Proof For any $i_0 \in \{1, \ldots, M\}$ we have

$$\|\varphi_{i_0}\|^4 \leq \|\varphi_{i_0}\|^4 + \sum_{i \neq i_0} |\langle \varphi_{i_0}, \varphi_i \rangle|^2 = \sum_{i=1}^M |\langle \varphi_{i_0}, \varphi_i \rangle|^2 \leq B_{\text{op}} \|\varphi_{i_0}\|^2. \quad (1.5)$$

The claims (i) and (ii) now directly follow from (1.5).
(iii) Let P denote the orthogonal projection of \mathcal{H}^N onto $(\text{span}\{\varphi_i\}_{i=1,i\neq i_0}^M)^\perp$. Then

$$A_{\text{op}} \| P\varphi_{i_0} \|^2 \leq \| P\varphi_{i_0} \|^4 + \sum_{i=1,i\neq i_0}^M |\langle P\varphi_{i_0}, \varphi_i \rangle|^2 = \| P\varphi_{i_0} \|^4.$$

Hence, either $P\varphi_{i_0} = 0$ (and thus $\varphi_{i_0} \in \text{span}\{\varphi_i\}_{i=1,i\neq i_0}^M$) or $A_{\text{op}} \leq \| P\varphi_{i_0} \|^2 \leq \| \varphi_{i_0} \|^2$. This proves (iii). \[\square\]

Ideally, we are interested in having an exact description of a frame in terms of its spanning and independence properties. The following questions could be answered by such a measure: How many disjoint linearly independent spanning sets does the frame contain? After removing these, how many disjoint linearly independent sets which span hyperplanes does it contain? And many more.

One of the main results in this direction is the following from [13].

Theorem 1.16 [13] Every unit norm tight frame $(\varphi_i)_{i=1}^M$ for \mathcal{H}^N with $M = kN + j$ elements, $0 \leq j < N$, can be partitioned into k linearly independent spanning sets plus a linearly independent set of j elements.

For its proof and further related results we refer to Chap. 3.

1.7.2 Redundancy

As we have discussed and will be seen throughout this book, redundancy is the key property of frames. This fact makes it even more surprising that, until recently, not much attention has been paid to introduce meaningful quantitative measures of redundancy. The classical measure of the redundancy of a frame $(\varphi_i)_{i=1}^M$ for \mathcal{H}^N is the quotient of the number of frame vectors and the dimension of the ambient space, i.e., $\frac{M}{N}$. However, this measure has serious problems in distinguishing, for instance, the two frames in Example 1.2 (1) and (2) by assigning the same redundancy measure $\frac{2N}{N} = 2$ to both of them. From a frame perspective these two frames are very different, since, for instance, one contains two spanning sets whereas the other just contains one.

Recently, in [12] a new notion of redundancy was proposed which seems to better capture the spirit of what redundancy should represent. To present this notion, let $S = \{x \in \mathcal{H}^N : \|x\| = 1\}$ denote the unit sphere in \mathcal{H}^N, and let $P_{\text{span}\{x\}}$ denote the orthogonal projection onto the subspace $\text{span}\{x\}$ for some $x \in \mathcal{H}^N$.

Definition 1.23 Let $\Phi = (\varphi_i)_{i=1}^M$ be a frame for \mathcal{H}^N. For each $x \in S$, the redundancy function $\mathcal{R}_\Phi : S \rightarrow \mathbb{R}^+$ is defined by

$$\mathcal{R}_\Phi(x) = \sum_{i=1}^M \| P_{\text{span}\{\varphi_i\}}x \|^2.$$
Then the upper redundancy of \(\Phi \) is defined by

\[
\overline{R}_\Phi = \max_{x \in S} R_\Phi(x),
\]

and the lower redundancy of \(\Phi \) is defined by

\[
\underline{R}_\Phi = \min_{x \in S} R_\Phi(x).
\]

Moreover, \(\Phi \) has uniform redundancy, if

\[
\underline{R}_\Phi = \overline{R}_\Phi.
\]

One might hope that this new notion of redundancy provides information about spanning and independence properties of the frame, since these are closely related to questions such as, say, whether a frame is resilient with respect to deletion of a particular number of frame vectors. Indeed, such a link exists and is detailed in the next result.

Theorem 1.17 [12] Let \(\Phi = (\varphi_i)_{i=1}^M \) be a frame for \(\mathcal{H}^N \) without zero vectors. Then the following conditions hold.

(i) \(\Phi \) contains \(\lfloor \underline{R}_\Phi \rfloor \) disjoint spanning sets.
(ii) \(\Phi \) can be partitioned into \(\lceil \overline{R}_\Phi \rceil \) linearly independent sets.

Various other properties of this notion of redundancy are known, such as additivity or its range, and we refer to [12] and Chap. 3 for more details.

At this point, we point out that this notion of upper and lower redundancy coincides with the optimal frame bounds of the normalized frame \((\frac{\varphi_i}{\|\varphi_i\|})_{i=1}^M \), after deletion of zero vectors. The crucial point is that with this viewpoint Theorem 1.17 combines analytic and algebraic properties of \(\Phi \).

1.7.3 Equivalence of Frames

We now consider equivalence classes of frames. As in other research areas, the idea is that frames in the same equivalence class share certain properties.

1.7.3.1 Isomorphic frames

The following definition states one equivalence relation for frames.

Definition 1.24 Two frames \((\varphi_i)_{i=1}^M\) and \((\psi_i)_{i=1}^M\) for \(\mathcal{H}^N \) are called isomorphic, if there exists an operator \(F : \mathcal{H}^N \to \mathcal{H}^N \) satisfying \(F \varphi_i = \psi_i \) for all \(i = 1, 2, \ldots, M \).
We remark that—due to the spanning property of frames—an operator F as in the above definition is both invertible and unique. Moreover, note that in [4] the isomorphy of frames with an operator F as above was termed F-equivalence.

The next theorem characterizes the isomorphy of two frames in terms of their analysis and synthesis operators.

Theorem 1.18 Let $(\varphi_i)_{i=1}^M$ and $(\psi_i)_{i=1}^M$ be frames for \mathcal{H}^N with analysis operators T_1 and T_2, respectively. Then the following conditions are equivalent.

(i) $(\varphi_i)_{i=1}^M$ is isomorphic to $(\psi_i)_{i=1}^M$.

(ii) $\text{ran } T_1 = \text{ran } T_2$.

(iii) $\ker T_1^* = \ker T_2^*$.

If one of (i)–(iii) holds, then the operator $F : \mathcal{H}^N \to \mathcal{H}^N$ with $F \varphi_i = \psi_i$ for all $i = 1, \ldots, N$ is given by $F = T_2^* (T_1^* |_{\text{ran } T_1})^{-1}$.

Proof The equivalence of (ii) and (iii) follows by orthogonal complementation. In the following let $(e_i)_{i=1}^M$ denote the standard unit vector basis of ℓ_2^M.

(i)⇒(iii) Let F be an invertible operator on \mathcal{H}^N such that $F \varphi_i = \psi_i$ for all $i = 1, \ldots, M$. Then Proposition 1.9 implies $T_2 = T_1 F^*$ and hence $T_1^* = T_2^*$. Since F is invertible, (iii) follows.

(ii)⇒(i) Let P be the orthogonal projection onto $W := \text{ran } T_1 = \text{ran } T_2$. Then $\varphi_i = T_1^* e_i = T_1^* P e_i$ and $\psi_i = T_2^* e_i = T_2^* P e_i$. The operators T_1^* and T_2^* both map W bijectively onto \mathcal{H}^N. Therefore, the operator $F := T_2^* (T_1^* |_{W})^{-1}$ maps \mathcal{H}^N bijectively onto itself. Consequently, for each $i \in \{1, \ldots, M\}$ we have $F \varphi_i = T_2^* (T_1^* |_{W})^{-1} T_1^* P e_i = T_2^* P e_i = \psi_i$, which proves (i) as well as the additional statement on the operator F. \square

An obvious, though interesting, result in the context of frame isomorphy is that the Parseval frame in Lemma 1.7 is in fact isomorphic to the original frame.

Lemma 1.8 Let $(\varphi_i)_{i=1}^M$ be a frame for \mathcal{H}^N with frame operator S. Then the Parseval frame $(S^{-1/2} \varphi_i)_{i=1}^M$ is isomorphic to $(\varphi_i)_{i=1}^M$.

Similarly, a given frame is also isomorphic to its canonical dual frame.

Lemma 1.9 Let $(\varphi_i)_{i=1}^M$ be a frame for \mathcal{H}^N with frame operator S. Then the canonical dual frame $(S^{-1} \varphi_i)_{i=1}^M$ is isomorphic to $(\varphi_i)_{i=1}^M$.

Intriguingly, it turns out—and will be proven in the following result—that the canonical dual frame is the only dual frame which is isomorphic to a given frame.

Proposition 1.23 Let $\Phi = (\varphi_i)_{i=1}^M$ be a frame for \mathcal{H}^N with frame operator S, and let $(\psi_i)_{i=1}^M$ and $(\tilde{\psi}_i)_{i=1}^M$ be two different dual frames for Φ. Then $(\psi_i)_{i=1}^M$ and $(\tilde{\psi}_i)_{i=1}^M$ are not isomorphic.
In particular, \((S^{-1} \varphi_i)_{i=1}^M\) is the only dual frame for \(\Phi\) which is isomorphic to \(\Phi\).

Proof Let \((\psi_i)_{i=1}^M\) and \((\tilde{\psi}_i)_{i=1}^M\) be different dual frames for \(\Phi\). Toward a contradiction, we assume that \((\psi_i)_{i=1}^M\) and \((\tilde{\psi}_i)_{i=1}^M\) are isomorphic, and let \(F\) denote the invertible operator satisfying \(\psi_i = F\tilde{\psi}_i\), \(i = 1, 2, \ldots, M\). Then, for each \(x \in \mathcal{H}^N\) we have

\[
F^*x = \sum_{i=1}^M (F^*x, \tilde{\psi}_i)\varphi_i = \sum_{i=1}^M \langle x, F\tilde{\psi}_i \rangle \varphi_i = \sum_{i=1}^M \langle x, \psi_i \rangle \varphi_i = x.
\]

Thus, \(F^* = Id\) which implies \(F = Id\), a contradiction. \(\square\)

1.7.3.2 Unitarily isomorphic frames

A stronger version of equivalence is given by the notion of unitarily isomorphic frames.

Definition 1.25 Two frames \((\varphi_i)_{i=1}^M\) and \((\psi_i)_{i=1}^M\) for \(\mathcal{H}^N\) are *unitarily isomorphic*, if there exists a unitary operator \(U : \mathcal{H}^N \to \mathcal{H}^N\) satisfying \(U\varphi_i = \psi_i\) for all \(i = 1, 2, \ldots, M\).

In the situation of Parseval frames, though, the notions of isomorphy and unitary isomorphy coincide.

Lemma 1.10 Let \((\varphi_i)_{i=1}^M\) and \((\psi_i)_{i=1}^M\) be isomorphic Parseval frames for \(\mathcal{H}^N\). Then they are even unitarily isomorphic.

Proof Let \(F\) be an invertible operator on \(\mathcal{H}^N\) with \(F\varphi_i = \psi_i\) for all \(i = 1, 2, \ldots, M\). By Proposition 1.10, the frame operator of \((F\varphi_i)_{i=1}^M\) is \(FF^* = FF^*\). On the other hand, the frame operator of \((\psi_i)_{i=1}^M\) is the identity. Hence, \(FF^* = Id\). \(\square\)

We end this section with a necessary and sufficient condition for two frames to be unitarily isomorphic.

Proposition 1.24 For two frames \((\varphi_i)_{i=1}^M\) and \((\psi_i)_{i=1}^M\) for \(\mathcal{H}^N\) with analysis operators \(T_1\) and \(T_2\), respectively, the following conditions are equivalent.

(i) \((\varphi_i)_{i=1}^M\) and \((\psi_i)_{i=1}^M\) are unitarily isomorphic.

(ii) \(\|T_1^*c\| = \|T_2^*c\|\) for all \(c \in \mathcal{L}_2^M\).

(iii) \(T_1T_1^* = T_2T_2^*\).

Proof (i)\(\Rightarrow\)(iii) Let \(U\) be a unitary operator on \(\mathcal{H}^N\) with \(U\varphi_i = \psi_i\) for all \(i = 1, \ldots, M\). Then, since by Proposition 1.9 we have \(T_2 = T_1U^*\), we obtain \(T_2T_2^* = T_1U^*UT_1^* = T_1T_1^*\) and thus (iii).
(iii)⇒(ii) This is immediate.

(ii)⇒(i) Since (ii) implies ker $T^*_1 = ker T^*_2$, it follows from Theorem 1.18 that $U \varphi_i = \psi_i$ for all $i = 1, \ldots, M$, where $U = T^*_2 (T^*_1 | ran T_1)^{-1}$. But this operator is unitary since (ii) also implies

$$\|T^*_2 (T^*_1 | ran T_1)^{-1} x\| = \|T^*_1 (T^*_1 | ran T_1)^{-1} x\| = \|x\|$$

for all $x \in \mathcal{H}^N$. □

1.8 Applications of Finite Frames

Finite frames are a versatile methodology for any application which requires redundant, yet stable, decompositions, e.g., for analysis or transmission of signals, but surprisingly also for more theoretically oriented questions. We state some of these applications in this section, which also coincide with the chapters of this book.

1.8.1 Noise and Erasure Reduction

Noise and erasures are one of the most common problems signal transmissions have to face [130–132]. The redundancy of frames is particularly suitable to reduce and compensate for such disturbances. Pioneering studies can be found in [50, 93–95], followed by the fundamental papers [10, 15, 102, 136, 149]. In addition one is always faced with the problem of suppressing errors introduced through quantization, both pulse code modulation (PCM) [20, 151] and sigma-delta quantization [7, 8, 16, 17]. Theoretical error considerations range from worst to average case scenarios. Different strategies for reconstruction exist depending on whether the receiver is aware or unaware of noise and erasures. Some more recent work also takes into account special types of erasures [18] or the selection of dual frames for reconstruction [121, 123]. Chapter 7 provides a comprehensive survey of these considerations and related results.

1.8.2 Resilience Against Perturbations

Perturbations of a signal are an additional problem faced by signal processing applications. Various results on the ability of frames to be resilient against perturbations are known. One class focuses on generally applicable frame perturbation results [3, 37, 59, 68], some even in the Banach space setting [39, 68]. Yet another topic is that of perturbations of specific frames such as Gabor frames [40], frames containing a Riesz basis [38], or frames for shift-invariant spaces [153]. Finally, extensions such as fusion frames are studied with respect to their behavior under perturbations [52].
1.8.3 Quantization Robustness

Each signal processing application contains an analog-to-digital conversion step, which is called quantization. Quantization is typically applied to the transform coefficients, which in our case are (redundant) frame coefficients; see [94, 95]. Interestingly, the redundancy of the frame can be successfully explored in the quantization step by using sigma-delta algorithms and a particular noncanonical dual frame reconstruction. In most regimes, the performance is significantly better than that obtained by rounding each coefficient separately (PCM). This was first observed in [7, 8]. Within a short amount of time, the error bounds were improved [16, 114], refined quantization schemes were studied [14, 17], specific dual frame constructions for reconstruction were developed [9, 98, 118], and PCM was revisited [105, 151]. The interested reader is referred to Chap. 8, which provides an introduction to the quantization of finite frames.

1.8.4 Compressed Sensing

Since high-dimensional signals are typically concentrated on lower dimensional subspaces, it is a natural assumption that the collected data can be represented by a sparse linear combination of an appropriately chosen frame. The novel methodology of compressed sensing, initially developed in [32, 33, 78], utilizes this observation to show that such signals can be reconstructed from very few nonadaptive linear measurements by linear programming techniques. For an introduction, we refer to the books [84, 86] and the survey [25]. Finite frames thus play an essential role, both as sparsifying systems and in designing the measurement matrix. For a selection of studies focusing in particular on the connection to frames, we refer to [1, 2, 31, 69, 141, 142]; for the connection to structured frames such as fusion frames, see [22, 85]. Chapter 9 provides an introduction to compressed sensing and the connection to finite frame theory.

There exists yet another intriguing connection of finite frames to sparsity methodologies, namely, aiming for sparse frame vectors to ensure low computational complexity. For this, we refer to the two papers [30, 49] and to Chap. 13.

1.8.5 Filter Banks

Filter banks are the basis for most signal processing applications. We exemplarily mention the general books [125, 145] and those with a particular focus on wavelets [75, 134, 150], as well as the beautiful survey articles [109, 110]. Usually, several filters are applied in parallel to an input signal, followed by downsampling. This processing method is closely related to the decomposition with respect to finite frames provided that the frame consists of equally spaced translates of a fixed set of vectors,
first observed in [19, 21, 71, 72] and later refined and extended in [62, 63, 90, 112]. This viewpoint has the benefit of providing a deeper understanding of filtering procedures, while retaining the potential of extensions of classical filter bank theory. We refer to Chap. 10, which provides an introduction into filter banks and their connections with finite frame theory.

1.8.6 Stable Partitions

The Feichtinger conjecture in frame theory conjectures the existence of certain partitions of frames into sequences with “good” frame bounds; see [41]. Its relevance becomes evident when modeling distributed processing, and stable frames are required for the local processing units (see also Sect. 1.9 on fusion frames). The fundamental papers [48, 55, 61] then linked this conjecture to a variety of open conjectures in what is customarily called pure mathematics such as the Kadison-Singer problem in C^*-algebras [107]. Chapter 11 provides an introduction into these connections and their significance. A particular focus of this chapter is also on the Paulsen problem [11, 27, 45], which provides error estimates on the ability of a frame to be simultaneously (almost) equal norm and (almost) tight.

1.9 Extensions

Typically motivated by applications, various extensions of finite frame theory have been developed over the last years. In this book, Chaps. 12 and 13 are devoted to the main two generalizations, whose key ideas we will now briefly describe.

• Probabilistic Frames. This theory is based on the observation that finite frames can be regarded as mass points distributed in \mathcal{H}^N. As an extension, probabilistic frames, which were introduced and studied in [81–83], constitute a class of general probability measures, again with appropriate stability constraints. Applications include, for instance, directional statistics in which probabilistic frames can be utilized to measure inconsistencies of certain statistical tests [108, 143, 144]. For more details on the theory and applications of probabilistic frames, we refer to Chap. 12.

• Fusion Frames. Signal processing by finite frames can be regarded as projections onto one-dimensional subspaces. In contrast to this, fusion frames, introduced in [51, 53], analyze and process a signal by (orthogonal) projections onto multidimensional subspaces, which again have to satisfy some stability conditions. They also allow for a local processing in the different subspaces. This theory is in fact a perfect fit to applications requiring distributed processing; we refer to the series of papers [22, 23, 28, 30, 42, 43, 46, 63, 117, 124]. We also mention that a closely related generalization called G-frames exists, which however does not admit any additional (local) structure and which is unrelated to applications (see, for instance, [137, 138]). A detailed introduction to fusion frame theory can be found in Chap. 13.
Acknowledgements The authors are grateful to Andreas Heinecke and Emily King for their extensive proofreading and various useful comments, which have significantly improved the presentation. P.G.C. acknowledges support by NSF Grants DMS 1008183 and ATD 1042701 as well as by AFOSR Grant FA9550-11-1-0245. G.K. acknowledges support by the Einstein Foundation Berlin, by Deutsche Forschungsgemeinschaft (DFG) Grant SPP-1324 KU 1446/13 and DFG Grant KU 1446/14, and by the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin. F.P. was supported by the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin.

References

23. Bownik, M., Luoto, K., Richmond, E.: A combinatorial characterization of tight fusion frames, preprint
1 Introduction to Finite Frame Theory

Finite Frames
Theory and Applications
Casazza, P.G.; Kutyniok, G. (Eds.)
2013, XVI, 485 p. 35 illus., 20 illus. in color., Hardcover
ISBN: 978-0-8176-8372-6
A product of Birkhäuser Basel