Contents

Preface

List of Figures

1 Introductory Survey

1.1 Configuration Space and Lagrangian Dynamics

1.2 Symplectic Manifolds

1.3 Phase Space and Hamiltonian Dynamics

1.4 The Liouville and Arnold Theorems

1.5 Quasi-Integrable Hamiltonian Systems and KAM Theorem

1.6 Geography of the Phase Space

1.7 Numerical Tools

1.8 The Perturbed Kepler Problem

1.9 The Multi-Body Gravitational Problem

2 Analytical Mechanics and Integrable Systems

2.1 Differential Geometry

2.1.1 Differentiable Manifolds

2.1.2 Tensors and Forms

2.1.3 Riemannian, Symplectic, and Poisson Manifolds
2.2 Lie Groups and Lie Algebras 36
 2.2.1 Definition and Properties 36
 2.2.2 Adjoint and Coadjoint Representation 40
 2.2.3 Action of a Lie Group on a Manifold 42
 2.2.4 Classification of Lie Groups and Lie Algebras 45

2.3 Lagrangian and Hamiltonian Mechanics 48
 2.3.1 Lagrange Equations 49
 2.3.2 Hamilton Principle 51
 2.3.3 Noether Theorem 52
 2.3.4 From Lagrange to Hamilton 54
 2.3.5 Canonical Transformations 56
 2.3.6 Hamilton-Jacobi Equation 57
 2.3.7 Symmetries and Reduction 58
 2.3.8 Liouville Theorem 63
 2.3.9 Arnold Theorem 68
 2.3.10 Action-Angle Variables: Examples 73

2.A Appendix: The Problem of two Fixed Centers 78

3 Perturbation Theory ... 83
 3.1 Formal Expansions 84
 3.1.1 Lie Series and Formal Canonical Transformations 84
 3.1.2 Homological Equation and Its Formal Solution 87
 3.2 Perpetual Stability and KAM Theorem 91
 3.2.1 Cauchy Inequality 93
 3.2.2 Convergence of Lie Series 95
 3.2.3 Homological Equation and Its Solution 97
 3.2.4 KAM Theorem (According to Kolmogorov) 100
 3.2.5 KAM Theorem (According to Arnold) 110
 3.2.6 Isoenergetic KAM Theorem 112
 3.3 Exponentially Long Stability and Nekhoroshev Theorem 113
 3.4 Geography of the Phase Space 120
 3.5 Elliptic Equilibrium Points 123
 3.A Appendix: Results from Diophantine Theory 125

4 Numerical Tools I: ODE Integration 131
 4.1 Cauchy Problem 132
 4.2 Euler Method 133
 4.3 Runge-Kutta Methods 135
 4.4 Gragg-Bulirsch-Stoer Method 137
 4.5 Adams-Bashforth-Moulton Methods 138
 4.6 Geometric Methods 140
 4.7 What Methods Are in the MATLAB Programs? 144
8 Some Perturbed Keplerian Systems

8.1 The Stark–Quadratic–Zeeman (SQZ) Problem 229
 8.1.1 First Order Normal Form .. 230
 8.1.2 Second Order Nonintegrable Normal Form 232
 8.1.3 Second Order Integrable Normal Form 234
 8.1.4 The Quadratic Zeeman (QZ) Problem 238
 8.1.5 The Parallel (SQZp) Problem ... 245
 8.1.6 The Crossed (SQZc) Problem ... 246
 8.1.7 The Generic (SQZ) Problem ... 255

8.2 The Non-Planar Circular Restricted Three-Body Problem 255

8.3 Satellite about an Oblate Primary 262

9 The Multi-Body Gravitational Problem

9.1 Global Planar Three-Body Problem 266
 9.1.1 The 2-Dimensional Secular Problem 268
 9.1.2 Reduction under the SO(2)-action 271
 9.1.3 The Reduced Motion ... 275

9.2 The 3-Dimensional Planetary Problem 284
 9.2.1 SO(3) and Poincaré Variables 285
 9.2.2 The Secular Planetary Problem 290
 9.2.3 Linear Approximation: Lagrange–Laplace Theory 295

9.3 The LAPLACE Program .. 297
 9.3.1 First Panel: Initial Conditions 298
 9.3.2 Second Panel: Integration ... 298
 9.3.3 Third Panel: Plot and Frequency Analysis 299
 9.3.4 Fourth Panel: Frequency Modulation Indicator 300
 9.3.5 Menu ... 300

9.4 Some Examples .. 301

10 Final Remarks and Perspectives

10 Final Remarks and Perspectives .. 305

A Appendix: What is in the CD?

A Appendix: What is in the CD? .. 309

B Appendix: If one has no access to MATLAB

B Appendix: If one has no access to MATLAB 317

Bibliography ... 319

Index .. 327
Geography of Order and Chaos in Mechanics
Investigations of Quasi-Integrable Systems with Analytical, Numerical, and Graphical Tools
Cordani, B.
2013, XVIII, 334 p., Hardcover
ISBN: 978-0-8176-8369-6
A product of Birkhäuser Basel