Contents

1 The Real Number System

1.1 Sets and Functions .. 1
1.1.1 Review of Sets .. 1
1.1.2 The Rational Numbers 4
1.1.3 The Irrational Numbers 5
1.1.4 Algebraic Numbers .. 6
1.1.5 The Field of Real Numbers 7
1.1.6 An Ordered Field .. 8
1.1.7 Questions and Exercises 9

1.2 Supremum and Infimum 10
1.2.1 Least Upper Bounds and Greatest Lower Bounds 11
1.2.2 Functions ... 14
1.2.3 Equivalent and Countable Sets 17
1.2.4 Questions and Exercises 19

2 Sequences: Convergence and Divergence

2.1 Sequences and Their Limits 23
2.1.1 Limits of Sequences of Real Numbers 24
2.1.2 Operations on Convergent Sequences 27
2.1.3 The Squeeze/Sandwich Rule 31
2.1.4 Bounded Monotone Sequences 34
2.1.5 Subsequences .. 35
2.1.6 Bounded Monotone Convergence Theorem 38
2.1.7 The Bolzano–Weierstrass Theorem 47
2.1.8 Questions and Exercises 49

2.2 Limit Inferior, Limit Superior, and Cauchy Sequences 53
2.2.1 Cauchy Sequences ... 59
2.2.2 Summability of Sequences 66
2.2.3 Questions and Exercises 69
3 Limits, Continuity, and Differentiability

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1</td>
<td>Limit Point of a Set</td>
<td>71</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Sequential Characterization of Limits</td>
<td>72</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Properties of Limits of Functions</td>
<td>76</td>
</tr>
<tr>
<td>3.1.4</td>
<td>One-Sided Limits</td>
<td>78</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Infinite Limits</td>
<td>79</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Limits at Infinity</td>
<td>80</td>
</tr>
<tr>
<td>3.1.7</td>
<td>Questions and Exercises</td>
<td>82</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Basic Properties of Continuous Functions</td>
<td>85</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Squeeze Rule and Examples of Continuous Functions</td>
<td>88</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Uniform Continuity</td>
<td>91</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Piecewise Continuous Functions</td>
<td>93</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Questions and Exercises</td>
<td>94</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Basic Properties of Differentiable Functions</td>
<td>97</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Smooth and Piecewise Smooth Functions</td>
<td>99</td>
</tr>
<tr>
<td>3.3.3</td>
<td>L'Hôpital's Rule</td>
<td>104</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Limit of a Sequence from a Continuous Function</td>
<td>108</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Questions and Exercises</td>
<td>109</td>
</tr>
</tbody>
</table>

4 Applications of Differentiability

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1</td>
<td>Basic Issues about Inverses on (\mathbb{R})</td>
<td>115</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Further Understanding of Inverse Mappings</td>
<td>118</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Questions and Exercises</td>
<td>119</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Local Extremum Theorem</td>
<td>123</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Rolle's Theorem and the Mean Value Theorem</td>
<td>127</td>
</tr>
<tr>
<td>4.2.3</td>
<td>L'Hôpital's Rule: Another Form</td>
<td>137</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Second-Derivative Test and Concavity</td>
<td>139</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Questions and Exercises</td>
<td>143</td>
</tr>
</tbody>
</table>

5 Series: Convergence and Divergence

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>Geometric Series</td>
<td>147</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Decimal Representation of Real Numbers</td>
<td>149</td>
</tr>
<tr>
<td>5.1.3</td>
<td>The Irrationality of (e)</td>
<td>152</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Telescoping Series</td>
<td>155</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Operations and Convergence Criteria in Series</td>
<td>156</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Absolutely and Conditionally Convergent Series</td>
<td>159</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Questions and Exercises</td>
<td>161</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Basic Divergence Tests</td>
<td>164</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Convergence and Divergence Tests for Series</td>
<td>167</td>
</tr>
</tbody>
</table>
8 Power Series
8.1 The Ratio Test and the Root Test 331
 8.1.1 The Ratio Test .. 331
 8.1.2 The Root Test .. 334
 8.1.3 Questions and Exercises 337
8.2 Basic Issues around the Ratio and Root Tests 338
 8.2.1 Convergence of Power Series 341
 8.2.2 Radius of Convergence of Power Series 343
 8.2.3 Methods for Finding the Radius of Convergence 347
 8.2.4 Uniqueness Theorem for Power Series 352
 8.2.5 Real Analytic Functions 355
 8.2.6 The Exponential Function 356
 8.2.7 Taylor’s Theorem .. 358
 8.2.8 Questions and Exercises 366

9 Uniform Convergence of Sequences of Functions 371
9.1 Pointwise and Uniform Convergence of Sequences 371
 9.1.1 Definitions and Examples 372
 9.1.2 Uniform Convergence and Continuity 382
 9.1.3 Interchange of Limit and Integration 385
 9.1.4 Questions and Exercises 390
9.2 Uniform Convergence of Series 394
 9.2.1 Two Tests for Uniform Convergence of Series 396
 9.2.2 Interchange of Summation and Integration 400
 9.2.3 Interchange of Limit and Differentiation 406
 9.2.4 The Weierstrass Approximation Theorem 411
 9.2.5 Abel’s Limit Theorem 416
 9.2.6 Abel’s Summability of Series and Tauber’s
 First Theorem .. 419
 9.2.7 \((C, \alpha)\) Summable Sequences 421
 9.2.8 Questions and Exercises 423

10 Fourier Series and Applications 429
10.1 A Basic Issue in Fourier Series 429
 10.1.1 Periodic Functions .. 430
 10.1.2 Trigonometric Polynomials 434
 10.1.3 The Space \(\mathcal{E}\) 434
 10.1.4 Basic Results on Fourier Series 436
 10.1.5 Questions and Exercises 441
10.2 Convergence of Fourier Series 443
 10.2.1 Statement of Dirichlet’s Theorem 443
 10.2.2 Fourier Series of Functions with an Arbitrary Period 448
10.2.3 Change of Interval and Half-Range Series 449
10.2.4 Issues Concerning Convergence 455
10.2.5 Dirichlet’s Kernel and Its Properties 458
10.2.6 Two Versions of Dirichlet’s Theorem 462
10.2.7 Questions and Exercises 464

11 Functions of Bounded Variation and Riemann–Stieltjes Integrals 469
11.1 Functions of Bounded Variation 469
11.1.1 Sufficient Conditions for Functions of Bounded Variation .. 470
11.1.2 Basic Properties of Functions of Bounded Variation . . 474
11.1.3 Characterization of Functions of Bounded Variation . . . 479
11.1.4 Bounded Variation and Absolute Continuity 483
11.1.5 Questions and Exercises 485
11.2 Stieltjes Integrals .. 488
11.2.1 The Darboux–Stieltjes Integral 490
11.2.2 The Riemann–Stieltjes Integral 500
11.2.3 Questions and Exercises 504

References for Further Reading 507

Index of Notation .. 509

Appendix A: Hints for Selected Questions and Exercises 513

Index .. 565
Foundations of Mathematical Analysis
Ponnusamy, S.
2012, XV, 570 p. 205 illus., Hardcover
ISBN: 978-0-8176-8291-0
A product of Birkhäuser Basel