Contents

1 Introduction .. 1

2 Background Material on Asymptotic Analysis of Extremal Problems .. 15
 2.1 Measure theory and basic notation ... 15
 2.1.1 Hausdorff measures .. 17
 2.2 Sobolev spaces and boundary value problems .. 19
 2.2.1 Weak derivatives ... 19
 2.2.2 Sobolev spaces ... 20
 2.2.3 Vector-valued spaces of the type $L^p(a, b; X)$ 25
 2.2.4 Lax–Milgram’s lemma .. 27
 2.2.5 General setting of the variational formulation of boundary value problems .. 28
 2.3 Spaces of periodic functions .. 33
 2.4 Weak and weak-* convergence in Banach spaces ... 34
 2.4.1 Weak convergence of measures .. 39
 2.4.2 Weak convergence in $L^1(\Omega)$... 43
 2.5 Elements of capacity theory .. 44
 2.6 On the space $W^{1,p}_0(\Omega) \cap L^p(\Omega, d\mu)$ and its properties 47
 2.7 Sobolev spaces with respect to a measure ... 49
 2.8 Boundary value problems in Sobolev spaces with measures 53
 2.9 On weak compactness of a class of bounded sets in Banach spaces 58

3 Variational Methods of Optimal Control Theory ... 63
 3.1 The general setting ... 64
 3.2 Abstract extremal problems .. 72
3.3 Extremal problems for steady-state processes 78
 3.3.1 Dirichlet and Neumann boundary control problems ... 78
 3.3.2 Ill-posed control objects 83
 3.3.3 Optimal control of the Cauchy problem for an elliptic equation .. 84
 3.3.4 Controls with hard constraints 86
3.4 Optimal control problems for parabolic equations 88
 3.4.1 Distributed control 88
 3.4.2 Control in the initial conditions 91
 3.4.3 Neumann boundary control 94
3.5 Optimal control problems for hyperbolic equations 98
3.6 Optimality system to optimal control problems 100
 3.6.1 The general setting of the Lagrange multiplier principle .. 100
 3.6.2 Necessary optimality conditions in the form of variational inequalities 106
3.7 Optimal control of distributed singular systems 109

4 Suboptimal and Approximate Solutions to Extremal Problems .. 113
 4.1 The notion of suboptimal and approximate solutions 114
 4.2 Regularization of optimal control problems 117
 4.3 ε-Suboptimal solutions to optimal control problems 123
 4.4 Approximate solutions to distributed singular systems ... 129

5 Introduction to the Asymptotic Analysis of Optimal Control Problems: A Parade of Examples 133
 5.1 Component-by-component limit analysis 134
 5.2 Limit analysis of optimality conditions 143
 5.3 Limit analysis of optimal control problems
 by Γ-convergence .. 150
 5.4 Direct variational convergence of optimal control problems .. 156

6 Convergence Concepts in Variable Banach Spaces 161
 6.1 General setting .. 161
 6.2 Weak convergence in variable L^p-spaces 167
 6.3 Two-scale convergence in variable L^p-spaces 171
 6.4 Variable Sobolev spaces and two-scale convergence 181
 6.4.1 p-Connected measures and their properties 181
 6.4.2 Degenerate measures 184
 6.4.3 Two-scale convergence in variable Sobolev spaces 185
 6.5 Approximation of singular measures by smoothing
 and its application .. 189
6.6 Two-scale convergence with respect to a variable measure ... 194
6.7 Some properties of the strong convergence in spaces $L^2(\Box, d\mu^h)$ associated with thin periodic structures ... 198
6.8 On approximative properties of Hilbert spaces with respect to a periodic Borel measure μ^h ... 203
6.9 The homothetic mean value property on periodically perforated domains ... 207
6.9.1 A measure approach to the description of the sets Ω_ε ... 209
6.9.2 The homothetic mean value property ... 212

7 Convergence of Sets in Variable Spaces ... 217
7.1 Set convergence in \mathbb{R}^n via the limit properties of characteristic functions ... 217
7.2 On some limit properties of characteristic functions for nonperiodically perforated domains ... 224
7.3 Convergence of sets associated with thin periodic structures ... 230
7.4 Set convergence in the sense of Kuratowski and in the Hausdorff metric ... 234
7.5 Parametrical convergence of open sets and of associated mappings ... 241
7.6 Kuratowski set convergence in variable spaces ... 247
7.7 γ_p-Convergence of open sets and Mosco convergence of the associated Sobolev spaces ... 257

8 Passing to the Limit in Constrained Minimization Problems ... 263
8.1 A short survey of Γ-convergence theory in metric spaces ... 264
8.2 Γ-Convergence of functionals defined on a Banach space ... 270
8.3 Variational convergence of constrained minimization problems in Banach spaces ... 275
8.4 Variational convergence of minimization problems in variable spaces ... 281
8.5 Asymptotic analysis of a Dirichlet optimal control problem ... 286
8.5.1 The statement of the optimal control problem and preliminary results ... 286
8.5.2 On modifications of the optimal control problem with controllability constraints ... 288
8.5.3 Passing to the limit in the modified optimal control problem ... 292
8.6 On homogenization of Dirichlet optimal control problems in perforated domains ... 299
Part II Optimal Control Problems on Periodic Reticulated Domains: Asymptotic Analysis and Approximate Solutions

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Suboptimal Control of Linear Steady-State Processes on Thin Periodic Structures with Mixed Boundary Controls</td>
<td>311</td>
</tr>
<tr>
<td>9.1</td>
<td>A measure-theoretic approach to the description of the network Ω_ε</td>
<td>315</td>
</tr>
<tr>
<td>9.2</td>
<td>Statement of the optimal control problem</td>
<td>320</td>
</tr>
<tr>
<td>9.3</td>
<td>Convergence in the variable space Z_ε</td>
<td>325</td>
</tr>
<tr>
<td>9.4</td>
<td>Definition of the limit problem and its properties</td>
<td>340</td>
</tr>
<tr>
<td>9.5</td>
<td>Main convergence theorem</td>
<td>343</td>
</tr>
<tr>
<td>9.6</td>
<td>Identification of the limit optimal control problem</td>
<td>347</td>
</tr>
<tr>
<td>9.7</td>
<td>On suboptimal controls for P_ε-problems</td>
<td>350</td>
</tr>
<tr>
<td>10</td>
<td>Approximate Solutions of Optimal Control Problems for Ill-Posed Parabolic Problems on Thin Periodic Structures</td>
<td>357</td>
</tr>
<tr>
<td>10.1</td>
<td>Statement of the problem</td>
<td>360</td>
</tr>
<tr>
<td>10.2</td>
<td>On the solvability of P_ε and its C-extension</td>
<td>362</td>
</tr>
<tr>
<td>10.3</td>
<td>On the description of CP_ε in terms of singular measures</td>
<td>369</td>
</tr>
<tr>
<td>10.4</td>
<td>Convergence in the variable space Z_ε</td>
<td>374</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Convergence formalism for Dirichlet boundary controls</td>
<td>378</td>
</tr>
<tr>
<td>10.4.2</td>
<td>w-Convergence of admissible solutions of the C-extended problems</td>
<td>380</td>
</tr>
<tr>
<td>10.5</td>
<td>The limiting optimal control problem</td>
<td>381</td>
</tr>
<tr>
<td>10.6</td>
<td>Main convergence theorem</td>
<td>383</td>
</tr>
<tr>
<td>10.7</td>
<td>The limit analysis of the C-extended optimal control problem</td>
<td>388</td>
</tr>
<tr>
<td>10.8</td>
<td>Recovery of the limiting singular optimal control problem P_{hom}</td>
<td>394</td>
</tr>
<tr>
<td>10.9</td>
<td>On suboptimal controls for P_ε-problems</td>
<td>398</td>
</tr>
<tr>
<td>10.10</td>
<td>Optimal control problem for systems on thin lattice structures with blowup</td>
<td>402</td>
</tr>
<tr>
<td>11</td>
<td>Asymptotic Analysis of Optimal Control Problems on Periodic Singular Graphs</td>
<td>409</td>
</tr>
<tr>
<td>11.1</td>
<td>ε-Periodic graphlike structures in \mathbb{R}^2 and their description</td>
<td>410</td>
</tr>
<tr>
<td>11.2</td>
<td>Statement of an optimal control problem on ε-periodic graphs</td>
<td>412</td>
</tr>
<tr>
<td>11.3</td>
<td>Convergence formalism in the variable spaces associated with ε-periodic graphs</td>
<td>416</td>
</tr>
</tbody>
</table>
11.4 Variational convergence of constrained minimization problems on varying graphs ... 421
11.5 Asymptotic analysis of optimal control problems on \(\varepsilon \)-periodic graphs .. 423
11.6 Modeling of suboptimal controls 432
11.7 An example of an optimal control problem on \(\varepsilon \)-periodic square grid .. 434

12 Suboptimal Boundary Control of Elliptic Equations in Domains with Small Holes .. 441
12.1 Statement of the problem .. 441
12.2 Reformulation of the original problem in terms of singular measures ... 445
12.3 Convergence in the variable space \(X_{\varepsilon} \) 449
12.4 Definition of a limit problem and its property 456
12.5 Convergence theorem and correctors 456
12.6 Identification of the limiting optimal control problem 467
12.7 Optimality conditions for the limit problem and suboptimal controls for \(P_{\varepsilon} \)-problem ... 472

13 Asymptotic Analysis of Elliptic Optimal Control Problems in Thick Multistructures with Dirichlet and Neumann Boundary Controls .. 477
13.1 Statement of the problem and basic notation 478
13.2 Description of the optimal control problem in terms of singular measures ... 481
13.3 The choice of topology .. 484
13.4 Definition of the limit problem and its properties 491
13.5 Analytical representation of the limit set of admissible solutions ... 492
13.6 Identification of the limiting cost functional 502
13.7 Modeling of suboptimal controls 506

14 Gap Phenomenon in Modeling of Suboptimal Controls to Parabolic Optimal Control Problems in Thick Multistructures .. 515
14.1 On solvability of the original optimal control problems ... 518
14.2 Formalism of convergence in variable Banach spaces 522
14.2.1 The convergence concept for the \(P_{\varepsilon}^{\alpha} \)-problems 523
14.2.2 The convergence concept for the \(P_{\varepsilon}^{\beta} \)-problems 527
14.3 Definition of the limit problems and their properties 528
14.4 Analytical representation of the limit sets of admissible solutions ... 532
14.4.1 Recovery of the set \(\Xi_{\alpha} \) 532
14.4.2 Recovery of the set \(\Xi_{\beta} \) 538
14.5 Identification of the cost functionals \(I_{\alpha} \) and \(I_{\beta} \) 540
15 Boundary Velocity Suboptimal Control of Incompressible Flow in Cylindrically Perforated Domains 547
 15.1 Preliminaries and notation 551
 15.2 Admissible controls and regularity of solutions to the boundary value problem for Navier–Stokes equations .. 552
 15.3 On solvability of the optimal boundary control problem . 554
 15.4 Reformulation of the problem (\(\mathcal{P}_\varepsilon\)) 555
 15.5 Convergence in the variable space \(X_\varepsilon\) 559
 15.6 Definition of suboptimal controls 563
 15.7 Convergence theorem .. 565
 15.8 Identification of the limit optimal control problem 576
 15.9 Suboptimal controls and their approximation properties 582

16 Optimal Control Problems in Coefficients: Sensitivity Analysis and Approximation 585
 16.1 Notation and preliminaries 586
 16.2 \(H\)-Convergence and a counterexample of Murat 590
 16.3 Setting of the optimal control problem and existence theorem .. 593
 16.4 \(H^\varepsilon\)- and \(t\)-admissible domain perturbations for optimal control problems in coefficients 601
 16.5 \(p\)-Perturbation of elliptic optimal control problems in coefficients .. 609
 16.6 Mosco-stability of optimal control problems 612

References ... 621

Index ... 635
Optimal Control Problems for Partial Differential Equations on Reticulated Domains
Approximation and Asymptotic Analysis
Kogut, P.I.; Leugering, G.R.
2011, XVI, 636 p. 26 illus., Hardcover
A product of Birkhäuser Basel