2

Thurston Norm

In this chapter, we prove the following theorem.

Theorem 2.1 (W. Thurston [Thu85]). *Suppose that M is a compact atoroidal orientable 3-manifold such that rank $H_2(M, \partial M; \mathbb{Z}) \geq 2$. Then M contains an embedded superincompressible surface that is not a fiber in a fibration of M over \mathbb{S}^1 and that represents a nontrivial element of $H_2(M, \partial M; \mathbb{Z})$.*

The proof of this theorem will be finished in Section 2.3. Our proof is essentially the same as Thurston’s.

2.1. Norms defined over \mathbb{Z}

Consider the space \mathbb{R}^n with the lattice \mathbb{Z}^n embedded in the standard way. Suppose that $p: \mathbb{Z}^n \rightarrow \mathbb{Z}$ is a nonnegative function that satisfies the following axioms:

1. p is linear along rays, i.e., $p(m \cdot z) = |m|p(z)$ for each $z \in \mathbb{Z}^n$, $m \in \mathbb{Z}$.

2. p is convex over \mathbb{Z}, i.e., for each $k, m \in \mathbb{Z}$, and $z, w \in \mathbb{Z}^n$, we have

$$p(k \cdot z + m \cdot w) \leq |k|p(z) + |m|p(w).$$

3. p is nondegenerate, i.e., $p(z) = 0$ iff $z = 0$.

A function p satisfying these properties is called a *norm defined over \mathbb{Z}*.

M. Kapovich, *Hyperbolic Manifolds and Discrete Groups*, Modern Birkhäuser Classics, DOI: 10.1007/978-0-8176-4913-5_2,
© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2001, First softcover printing 2009
Theorem 2.2. Each norm defined over \mathbb{Z} extends to a (usual) norm defined on the whole space \mathbb{R}^n.

Proof. Suppose that $\alpha \in \mathbb{Q}^n - \{0\}$. Then there exists $m \in \mathbb{Z}$ such that $m \cdot \alpha \in \mathbb{Z}^n$, and we let $p(\alpha) = p(m \cdot \alpha)/m$. This extension of the function p to \mathbb{Q}^n is well defined since p is linear on rays in \mathbb{Z}^n. Clearly, the function $p : \mathbb{Q}^n \to \mathbb{Q}$ is linear on rays and \mathbb{Q}-convex in the sense that $p(k\alpha + m\beta) \leq |k|p(\alpha) + |m|p(\beta)$ for all $k, m \in \mathbb{Q}$ and $\alpha, \beta \in \mathbb{Q}^n$.

Lemma 2.3. The function $p : \mathbb{Q}^n \to \mathbb{Q}$ extends continuously to a seminorm (again denoted by p) on \mathbb{R}^n.

Proof. The reader will verify that for each $x \in \mathbb{Q}^n$ the restriction of p to the unit ball centered at x is bounded by a constant C. For $y \in \mathbb{Q}^n$ choose $Y = Y(y) \in \mathbb{Q}^n$ such that $|Y - x| \leq 1$, $y = (1 - t)x + tY$, $t \in \mathbb{Q}$, and $t \to 0$ as $y \to x$. Therefore, by convexity,

$$\lim_{y \to x} p(y) \leq \lim_{t \to 0} ((1 - t)p(x) + tC) = p(x).$$

On the other hand, if $y \in \mathbb{Q}^n$ converges to x and x is the midpoint of the segment $[yz]$, then z converges to x and $p(x) \leq (p(y) + p(z))/2$. Hence

$$\lim_{y \to x} p(y) \geq p(x).$$

Lemma 2.4. $p : \mathbb{R}^n \to \mathbb{R}$ is a norm.

Proof. Suppose that $p(x) = 0$ and $x \neq 0$. The sublevel set $C = \{p(y) < 1/2\}$ is an open convex neighborhood of the line $\mathbb{R} \cdot x$. Thus C contains at least one integral point $z \in \mathbb{Z}^n - \{0\}$. Contradiction.

This finishes the proof of Theorem 2.2.

We retain the name norm defined over \mathbb{Z} for the extension of p to \mathbb{R}^n. Let

$$B^{(p)}(r) = \{v \in \mathbb{R}^n : p(v) \leq r\}$$

denote the ball of radius r centered at zero, with respect to the norm p.

Theorem 2.5. Any norm $p : \mathbb{R}^n \to \mathbb{R}$ defined over \mathbb{Z} has the following property. Suppose that z is an element of \mathbb{Z}^n. Then there exists a linear function l such that

- $l(z/p(z)) = 1$;
- $l : \mathbb{Z}^n \to \mathbb{Z}$, i.e., the function l is defined over \mathbb{Z};
- the operator norm of l with respect to p is equal to 1, i.e., $|l(\alpha)| \leq 1$ for all $\alpha \in B^{(p)}(1)$.

2.2. Variation of fiber-bundle structure

Proof. We consider the sequence of integral balls of radius \(r \) in \(\mathbb{R}^n \):
\[
B^{(p)}(r) \cap \mathbb{Z}^n,
\]
where \(r \in \mathbb{Z}_+ \cdot p(z) \). Then
\[
\bigcup_{r \in \mathbb{Z}_+} \frac{1}{r} \cdot (B^{(p)}(r) \cap \mathbb{Z}^n) = B^{(p)}(1) \cap \mathbb{Q}^n.
\]

Note that the integer vector \(\frac{r}{p(z)} \cdot z \) belongs to the boundary of \(B^{(p)}(r) \) for each \(r \) as above. The convex hulls \(C(r) \) of \(B^{(p)}(r) \cap \mathbb{Z}^n \) are finite polyhedra whose faces are defined over \(\mathbb{Z} \) in the sense that each top-dimensional face is contained in the zero level set of a linear function with integer coefficients. Thus for each point \(\frac{r}{p(z)} \cdot z \) there is linear function \(l_r \) with integer coefficients such that \(l_r(\frac{r}{p(z)} \cdot z) = r \) and the level set \(\{ l_r(w) = r \} \) is disjoint from the interior of \(C(r) \). Hence \(l_r(z/p(z)) = 1 \), and the level set \(\{ l_r(v) = 1 \} \) is disjoint from the interior of \(\frac{1}{r} C(r) \). However the convex sets \(\frac{1}{r} C(r) \) exhaust the unit ball \(B^{(p)}(1) \). Thus the operator norms (with respect to \(p \)) of the linear functions \(l_r \) are convergent to 1 as \(r \to \infty \). This means that the sequence of linear functions \(l_r \) with integer coefficients is subconvergent as \(r \to \infty \) to a linear function \(l \) whose norm is equal to 1. Clearly \(l \) has integer coefficients and \(l(z/p(z)) = 1 \). \(\square\)

The ratios \(z/p(z), z \in \mathbb{Z}^n \), are dense in the unit sphere \(\partial B^{(p)}(1) \). Thus the unit ball \(B^{(p)}(1) \) is the intersection of the sublevel sets \(\{ l \leq 1 \} \), where the linear functions \(l \) are as in Theorem 2.5. However the number of such linear functions \(l \) is finite. We conclude that \(B^{(p)}(1) \) is a polyhedron with finitely many faces that are given by linear equations with integer coefficients.

Corollary 2.6. Suppose that \(v \) is a vertex of the polyhedron \(B^{(p)}(1) \). Then there exists an element \(z \in \mathbb{Z}^n \) such that \(v = z/p(z) \).

2.2. Variation of fiber-bundle structure

Suppose that \(M \) is a compact 3-manifold (smoothly) fibered over \(S^1 \). Let \(\mathcal{F} \) denote the fibration and \(F_t \) denote the fiber of \(\mathcal{F} \) over \(t \in S^1 \). The fibers \(F_t \) are transversal to the boundary of \(M \), and we assume that \(M \) is given a Riemannian metric such that \(F_t \) are orthogonal to \(\partial M \). The tangent planes to the fibers \(F_t \) define a plane subbundle \(P \subset T(M) \). Let \(L \) denote the unit vector field on \(M \) that is orthogonal to \(P \). Along each boundary curve \(\partial F_t \) we choose the unit tangent field \(X \) on \(F_t \) that is orthogonal to \(\partial M \). Thus we get a section \(X \) of \(P|_{\partial M} \). The pair \((P, X) \) determines an element of \(H_2(M, \partial M)^* \equiv H^1(M) \) as follows. Suppose that \(h : (\Sigma, \partial \Sigma) \to (M, \partial M) \) is a proper smooth map from a surface \(\Sigma \) that is a representative of a relative cycle \(\zeta \in Z_2(M, \partial M) \). Then \(h^*(P) \) is a 2-dimensional vector bundle over \(\Sigma \) with the prescribed section \(h^*(X) \) over \(\partial \Sigma \). There is a well-defined obstruction (the relative Euler number) \(e(h^*(P), X) \in \mathbb{Z} \) to the extension of \(h^*(X) \) to a nonzero section of the bundle \(h^*(P) \). Thus we define \(\tau \in H_2(M, \partial M)^* \) as \(\tau([\zeta]) = e(h^*(P), X) \). It is
easy to see that τ is well defined. Obviously for the relative class $[\xi] \in H_2(M, \partial M)$ that is represented by a fiber F_i we get $\tau([\xi]) = \chi(F_i)$.

There is a closed nondegenerate integer 1-form θ on M whose kernel is the tangent subbundle of \mathcal{F}. Namely, if $f : M \to S^1$ is the fibration, then θ is the pullback under f of the angle form dt from S^1. The converse to this is true as well.

Theorem 2.7 (D. Tishler [Tis70]). Suppose that ω is a closed nondegenerate 1-form on M that has integer periods (i.e., it determines an element of $H^1(M, \mathbb{Z})$). Assume that the restriction of ω to ∂M is nondegenerate. Then there exists a fibration \mathcal{G} of M over S^1 such that fibers of \mathcal{G} are tangent to the kernel distribution of ω.

Sketch of the proof. Choose a base point $p \in M$ and consider the indefinite integral

$$f(q) = \int_p^q \omega \in \mathbb{R}/\mathbb{Z}.$$

The function $f(q)$ is well defined and smooth, and local calculation shows that f has maximal rank at each point. Thus f is a fibration. \hfill \Box

Now suppose that ω is a closed rational nondegenerate 1-form on M that is sufficiently close to θ, namely we assume that the kernel distribution of ω is transversal to the vector field L. Since ω is rational, the kernel distribution Q of ω is tangent to a fibration G of M by surfaces $G_t, t \in S^1$. The fibers of \mathcal{G} determine a relative class $[\xi] \in H_2(M, \partial M)$.

Lemma 2.8. $\tau([\xi]) = \chi(G_t)$.

Proof. Since both \mathcal{F} and \mathcal{G} are transversal to the vector field L, we conclude that for each fiber $G = G_t$ of \mathcal{G}:

$$P|_G \cong T(M)|_G / \text{Span}(L) \cong Q|_G.$$

Thus the bundles $P|_G$ and $Q|_G$ are isomorphic and, moreover, the isomorphism λ between them carries the section X (of $P|_G$) to the tangent vector field $\lambda(X)$ on G that is normal to ∂G. Therefore the obstruction $\chi(G)$ to the extension of $\lambda(X)$ to a nonzero field on G is the same as the relative Euler number $\tau([\xi]) = e(P|_G, X)$.

\hfill \Box

2.3. Application to incompressible surfaces

We consider a compact irreducible atoroidal orientable manifold M with (possibly empty) incompressible boundary of zero Euler characteristic. Suppose that $\xi \in H_2(M, \partial M; \mathbb{Z})$ is a relative homology class. Define **Thurston's norm** $x(\xi)$ as

$$x(\xi) = \|\xi\| := \min\{\|\chi(S)\| : (S, \partial S) \subset (M, \partial M) \text{ is an embedded surface representing the class } \xi\}.$$
2.3. Application to incompressible surfaces

Since the manifold M is atoroidal, $x(\xi) \neq 0$ for each $\xi \neq 0$. There is a generalization of Thurston's norm that is defined by taking the minimum over immersed surfaces representing the given homology class. It turns out that two norms coincide; see [Gab83], [Per93].

Lemma 2.9. Every element $\xi \in H_2(M, \partial M; \mathbb{Z})$ is represented by an embedded oriented surface S. If $\xi/n \in H_2(M, \partial M; \mathbb{Z})$ for some $n > 0$, then any surface S representing ξ is the union of n disjoint subsurfaces S_j each representing ξ/n.

Remark 2.10. The surfaces S_j could be disconnected.

Proof. Recall that (by duality) each element $\zeta \in H_2(M, \partial M; \mathbb{Z})$ determines an element $\zeta^* \in H^1(\pi_1(M), \mathbb{Z}) \cong H^1(\pi_1(M), \mathbb{Z})$; the latter is a homomorphism $\zeta^* : \pi_1(M) \to \mathbb{Z}$. The homomorphism ζ^* is induced by a PL map $f : M \to S^1$. If c is a regular value of f, then the surface $F = f^{-1}(c)$ is embedded, has canonical orientation, and represents the class ζ. This proves the first assertion of the lemma (cf. Lemma 1.23).

Suppose that $\zeta \in H_2(M, \partial M; \mathbb{Z})$ is represented by an embedded relative 2-cycle F. The image of the first homology group of F in $H_1(M, \mathbb{Z})$ lies in the kernel of ζ^*; hence the restriction of f to F is homotopic to a constant, and we can choose f within its homotopy class to be constant on F. We can also assume that f has regular value at $c = f(F)$. The inverse image $f^{-1}(c)$ can be larger then the surface F. However, since $f^{-1}(c)$ is homologous to F, we conclude that $F_0 = f^{-1}(c) - F$ is homologically trivial.

If two maps $f, g : M \to S^1$ correspond to the same homology class ζ, then f is homotopic to g (since they induce the same homomorphism of $\pi_1(M)$).

Now let us use this to prove the second assertion of the lemma. Suppose that $\alpha = \xi/n \in H_2(M, \partial M; \mathbb{Z})$, $f_\alpha, f_{\bar{\xi}} : M \to S^1$ are the corresponding maps, and the subsurface $S \subset f_{\bar{\xi}}^{-1}(c)$ represents the homology class $\bar{\xi}$. Let $\lambda : S^1 \to S^1$ be the n-covering, the inverse image $\lambda^{-1}(c)$ is a set $\{b_1, \ldots, b_n\}$. Hence the function $\lambda \circ f_\alpha$ corresponds to the class $n\alpha = \xi$; this function is homotopic to $f_{\bar{\xi}}$. Thus $f_{\bar{\xi}}$ lifts to a function $\tilde{f}_{\bar{\xi}} : M \to S^1$ via the covering λ. Therefore the surface

$$S \cup S_0 = f_{\bar{\xi}}^{-1}(c) = \bigcup_{i=1}^n \tilde{f}_{\xi}^{-1}(b_i)$$

is a disjoint union of n subsurfaces S_1, \ldots, S_n. Recall that the relative homology class $[S_0]$ is trivial. Since the function $\tilde{f}_{\bar{\xi}}$ is homotopic to f_α, we conclude that each of these subsurfaces represents the homology class α. \qed

From now on we shall assume that all components of surfaces representing nontrivial homology classes in $H_2(M, \partial M; \mathbb{Z})$ have negative Euler characteristic. (We can make this assumption since ∂M is incompressible and M is atoroidal and aspherical.)
Theorem 2.11. Suppose that M is a 3-manifold as above. Then the function

$$x : H_2(M, \partial M; \mathbb{Z}) \rightarrow \mathbb{Z}$$

is a norm defined over \mathbb{Z}.

Proof. According to Lemma 2.9, we have

$$x(n\xi) \geq |n|x(\xi) \text{ for all } n \in \mathbb{Z}.$$

The opposite inequality is obvious. Thus $x(n\xi) = |n|x(\xi)$ for all $n \in \mathbb{Z}$, i.e., x is linear on rays.

Lemma 2.12. If $\alpha, \beta \in H_2(M, \partial M; \mathbb{Z})$, then $x(\alpha + \beta) \leq x(\alpha) + x(\beta)$.

Proof. Represent the classes α, β by PL-embedded oriented surfaces A, B. We can assume that these surfaces intersect transversally: their intersection is a 1-dimensional submanifold Γ. By Theorem 1.23 we can assume that each surface A, B is incompressible. Consider components of $A - \Gamma$ and $B - \Gamma$. If a component of, say, $A - \Gamma$ is a disk D_A bounded by a loop $\gamma \subset A$, then γ bounds a disk D_B on B and we can “trade” these disks: take $A := A - D_A \cup D_B, B := B - D_B \cup D_A$ (see Figure 2.1).

![Figure 2.1: Trading disks and pushing surfaces apart.](image)

By pushing the new surfaces apart near γ we eliminate the intersection along γ. This procedure preserves the homology classes of A and B (since M is aspherical and the sphere $D_A \cup D_B$ is contractible in M) and preserves the Euler characteristics of the surfaces. Thus we may assume that each component of $A - \Gamma$ and $B - \Gamma$ is different from the disk. The union of surfaces $A \cup B$ with the natural orientation of simplices on A, B represents the class $\alpha + \beta$. Now we remove Γ from both A and B and glue the components of the complement as follows. Suppose that $C_A \subset A - \Gamma$ is adjacent to a loop $\gamma \subset \Gamma$. There are exactly two components of $B - \Gamma \cap \text{Nbd}(\gamma)$ that are adjacent to γ. We glue C_A to the one that induces an orientation on γ opposite to the orientation induced by C_A and do the same with the component $C_B \subset B - \Gamma$ (exactly the same way as we did with disks D_A, D_B).
above; see Figure 2.1). We repeat this procedure for all components of \(A \cup B - \Gamma \).

The resulting singular 2-cycle \(R(A \cup B) \) has nontransversal self-intersections along \(\Gamma \). Clearly \(R(A \cup B) \) has the same homology class as \(\alpha + \beta \). Thus we push the self-intersections apart, and the result is an embedded oriented surface \(A \oplus B \) that represents the homology class \(\alpha + \beta \).

Direct calculation shows that \(\chi(A) + \chi(B) = \chi(A \oplus B) \). Also, no component of \(A \oplus B \) is a sphere. This proves the lemma. \(\square \)

The above lemma and linearity of the function \(x \) on rays imply that \(x \) is convex. Finally, the norm \(x \) is nondegenerate since there are no elements of \(H_2(M, \partial M; \mathbb{Z}) - \{0\} \) that are represented by tori. \(\square \)

Theorem 2.2 implies that the norm \(x \) (defined over \(\mathbb{Z} \)) extends from \(H_2(M, \partial M; \mathbb{Z}) \) to \(H_2(M, \partial M; \mathbb{R}) \).

Theorem 2.13. Suppose that \(\dim(H_2(M, \partial M; \mathbb{R})) \geq 2 \). Let \(\zeta \in H_2(M, \partial M; \mathbb{Z}) \) be such that \(v = \zeta / x(\zeta) \) is a vertex of the polyhedron \(B^{(x)}(1) \). Then \(\zeta \) cannot be represented by a fiber in a fibration of \(M \) over \(S^1 \).

Proof. Suppose that \(\zeta \) is a class in \(H_2(M, \partial M; \mathbb{Z}) \) represented by a fibration of \(M \) over \(S^1 \). Recall that such a fibration determines a nonzero element \(\tau \in H_2(M, \partial M)^* \). We proved that there exists a positive number \(\epsilon \) such that the linear function \(\tau \) satisfies the following properties:

- The linear function \(\tau \) is integral, i.e., \(\tau : H_2(M, \partial M; \mathbb{Z}) \to \mathbb{Z} \).
- For all integer classes \(\xi \in H_2(M, \partial M; \mathbb{Z}) \) such that
 \[
 \|\xi / x(\xi) - v\| \leq \epsilon,
 \]
 we have \(x(\xi) = -\tau(\xi) \).

Rational classes are dense in the cone

\[
C_\varepsilon(v) = \{\alpha \in H_2(M, \partial M; \mathbb{R}) : \|\alpha / x(\alpha) - v\| \leq \epsilon\}.
\]

Thus we conclude that in this cone the integer linear function \(-\tau \) coincides with Thurston's norm \(x \). Therefore the unit vector \(v \) belongs to the interior of a top-dimensional face of the unit sphere \(\partial B^{(x)}(1) \), which locally (near \(v \)) is given by the equation \(\tau(\beta) = -1 \). This contradicts our assumptions. \(\square \)

Now we can prove the main theorem of this chapter (Theorem 2.1).

Proof. Take any vertex \(v \) of the polyhedron \(B^{(x)}(1) \). According to Corollary 2.6 there exists an integral class \(\zeta \in H_2(M, \partial M; \mathbb{Z}) \) such that \(v = \zeta / x(\zeta) \). On the other hand, by Theorem 2.13, the class \(\zeta \) is not represented by a fiber in any fibration of \(M \) over \(S^1 \). The class \(\zeta \) is nontrivial, and thus it can be represented by a superincompressible surface \(S \) according to Theorem 1.23. \(\square \)
Corollary 2.14. Suppose that M is an orientable atoroidal 3-manifold that fibers over the circle with the fiber Σ. Assume that M has at least two boundary components. Then M contains an embedded superincompressible surface that is not a fiber in a fibration of M over S^1 and that represents a nontrivial element of $H_2(M, \partial M; \mathbb{R})$.

Proof. It is clear that $\dim H_2(M, \partial M; \mathbb{R}) \geq 1$ since the relative homology class $[\Sigma]$ is nontrivial. By duality $H_2(M, \partial M; \mathbb{R}) \cong H_1(M, \mathbb{R})$. Let T_1, T_2 be distinct boundary tori of M. Suppose that $[\gamma] \in H_1(T_1, \mathbb{R}) - \{0\}$ is in the kernel of the homomorphism $H_1(T_1, \mathbb{R}) \to H_1(M, \mathbb{R})$. Then $\gamma = \partial \sigma$ where $[\sigma] \in H_2(M, T_1; \mathbb{R})$. Hence the image of $[\sigma]$ in $H_1(T_2, \mathbb{R})$ is zero. Therefore $[\sigma]$ and $[\Sigma]$ are linearly independent since $[\Sigma]$ has nontrivial image in $H_1(T_j, \mathbb{R})$ for each boundary torus T_j. Thus $\dim H_2(M, \partial M; \mathbb{R}) \geq 2$ in this case. The remaining case is that $H_1(T_1, \mathbb{R})$ injects into $H_1(M, \mathbb{R})$, and $\dim H_1(M, \mathbb{R}) \geq 2$. This again implies that $\dim H_2(M, \partial M; \mathbb{R}) \geq 2$. Thus the assertion of the corollary follows from Theorem 2.1.

Corollary 2.15. Suppose that M is an orientable atoroidal 3-manifold that fibers over the circle with the fiber Σ. Assume that M has at least one boundary component. Then M admits a finite cover $M' \to M$ such that M' contains an embedded superincompressible surface that is not a fiber in a fibration of M over S^1 and that represents a nontrivial element of $H_2(M, \partial M; \mathbb{R})$.

Proof. According to the above corollary, it suffices to find a finite covering over M that has at least two boundary components. Let $\Sigma' \to \Sigma$ be the characteristic covering corresponding to the kernel of the homomorphism $\pi_1(\Sigma) \to H_1(\Sigma, \mathbb{Z}_2)$. Then the surface Σ' has at least two boundary components. The manifold M is the mapping torus of a homeomorphism $\tau : \Sigma \to \Sigma$. The characteristic subgroup $\pi_1(\Sigma')$ is invariant under τ_*. There is $n \geq 1$ such that τ^n lifts to a homeomorphism τ' of Σ' that maps each boundary circle to itself. The mapping torus of τ' is the required finite covering M' over M.

\qed
Hyperbolic Manifolds and Discrete Groups
Kapovich, M.
2010, XXVI, 470 p. 78 illus., Softcover
ISBN: 978-0-8176-4912-8
A product of Birkhäuser Basel