2

Geometric Versus Spectral Convergence for the Neumann Laplacian under Exterior Perturbations of the Domain

J.M. Arrieta1 and D. Krejčiřík2

1 Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; arrieta@mat.ucm.es
2 Nuclear Physics Institute, ASCR, 25068 Řež, Czech Republic; krejcirik@ujf.cas.cz

2.1 Introduction

This chapter is concerned with the behavior of the eigenvalues and eigenfunctions of the Laplace operator in bounded domains when the domain undergoes a perturbation. It is well known that if the boundary condition that we are imposing is of Dirichlet type, the kind of perturbations that we may allow in order to obtain the continuity of the spectra is much broader than in the case of a Neumann boundary condition. This is explicitly stated in the pioneer work of Courant and Hilbert [CoHi53], and it has been subsequently clarified in many works, see [BaVy65, Ar97, Da03] and the references therein among others. See also [HeA06] for a general text on different properties of eigenvalues and [HeD05] for a study on the behavior of eigenvalues and in general partial differential equations when the domain is perturbed.

In particular, with a Dirichlet boundary condition we may consider the case where the fixed domain is a bounded “smooth” domain $\Omega_0 \subset \mathbb{R}^N$, $N \geq 2$, and the perturbed domain is Ω_ϵ in such a way that $\Omega_0 \subset \Omega_\epsilon$, that is, we consider exterior perturbation of the domain. We may have perturbations of this type where $|\Omega_\epsilon \setminus \Omega_0| \geq \eta$ for some fixed $\eta > 0$, and still we have the convergence of the eigenvalues and eigenfunctions. Moreover, we may even have the case $|\Omega_\epsilon \setminus \Omega_0| \to +\infty$, and still we have the convergence of the eigenvalues and eigenfunctions.

To obtain an example of this situation is not too difficult. If we consider, for instance, $\Omega \subset \mathbb{R}^2$, given by $\Omega_0 = (0, 1) \times (-1, 0)$ and

$$\Omega_\epsilon(a) = \{(x, y) : 0 < x < 1, -1 < y < a(1 + \sin(x/\epsilon))\} \supset \Omega_0$$

where $a > 0$ is fixed, we can easily see that the eigenvalues and eigenfunctions of the Laplace operator with Dirichlet boundary condition in Ω_ϵ converge to the ones in Ω_0. Moreover, $|\Omega_\epsilon| = |\Omega_0| + \int_0^1 a(1 + \sin(x/\epsilon))dx \sim |\Omega_0| + a$
for ϵ small enough. Moreover, it is not difficult to modify the example above choosing the constant a dependent with respect to ϵ in such a way that $a(\epsilon) \to +\infty$ and such that the eigenvalues and eigenfunctions in $\Omega_\epsilon(a(\epsilon))$ still converge to the ones in Ω_0 and $|\Omega_\epsilon(a(\epsilon)) \setminus \Omega_0| \to +\infty$. This example shows that the class of perturbations that we may allow to get the “spectral convergence” of the Dirichlet Laplacian is very broad and that knowing that the eigenvalues and eigenfunctions of the Dirichlet Laplacian converge does not have many “geometrical” restrictions for the domains.

The case of the Neumann boundary condition is much more subtle. As a matter of fact, for the situation depicted above, it is not true that the spectra converge. So we ask ourselves the following questions: if we have a domain Ω_0 and consider a perturbation of it given by $\Omega_0 \subset \Omega_\epsilon$, where we assume that all the domains are smooth and bounded although not necessarily uniformly bounded on the parameter ϵ, then if we have the convergence of the eigenvalues and eigenfunctions,

(Q1) should it be true that $|\Omega_\epsilon \setminus \Omega_0| \xrightarrow{\epsilon \to 0} 0$?

(Q2) should it be true that $\text{dist}(\Omega_\epsilon, \Omega_0) = \sup_{x \in \Omega_\epsilon} \text{dist}(x, \Omega_0) \xrightarrow{\epsilon \to 0} 0$?

We will see that the answer to the first question is Yes and, surprisingly, the answer to the second one is No.

Observe that, as the example above shows, the answer to both questions for the case of the Dirichlet boundary condition is No.

In Section 2.2 we recall a result from [Ar95, ArCa04] which provides a necessary and sufficient condition for the convergence of eigenvalues and eigenfunctions when the domain is perturbed. In Section 2.3 we provide an answer to question (Q1), and in Section 2.4 we provide an answer to question (Q2).

2.2 Characterization of the Spectral Convergence of the Neumann Laplacian

In this section we give a necessary and sufficient condition for the convergence of the eigenvalues and eigenfunctions of the Laplace operator with Neumann boundary conditions. We refer to [Ar95] and [ArCa04] for a general result in this direction, in even a more general context than the one in this chapter. In our particular case, we will consider the following situation: let Ω_0 be a fixed bounded smooth (Lipschitz is enough) open set in \mathbb{R}^N with $N \geq 2$ and let Ω_ϵ be a family of domains such that, for each fixed $0 < \epsilon \leq \epsilon_0$, Ω_ϵ is bounded and smooth with $\Omega_0 \subset \Omega_\epsilon$.

Let us define now what we mean by the spectral convergence. For $0 \leq \epsilon \leq \epsilon_0$, we denote by $\left\{\lambda_n^\epsilon\right\}_{n=1}^\infty$ the sequence of eigenvalues of the Neumann Laplacian in Ω_ϵ, always ordered and counting its multiplicity, and we denote by $\left\{\phi_n^\epsilon\right\}_{n=1}^\infty$ a corresponding set of orthonormal eigenfunctions in Ω_ϵ. Also,
since we are considering domains which vary with the parameter ϵ, and we will need to compare functions defined in Ω_0 and in Ω_ϵ, we introduce the following space $H_\epsilon^1 = H^1(\Omega_0) \oplus H^1(\Omega_\epsilon \setminus \Omega_0)$, that is, $\chi \in H_\epsilon^1$ if $\chi|_{\Omega_0} \in H^1(\Omega_0)$ and $\chi|_{(\Omega_\epsilon \setminus \Omega_0)} \in H^1(\Omega_\epsilon \setminus \Omega_0)$, with the norm
\[\|\chi\|_{H_\epsilon^1}^2 = \|\chi\|_{H^1(\Omega_0)}^2 + \|\chi\|_{H^1(\Omega_\epsilon \setminus \Omega_0)}^2. \]

We have that $H^1(\Omega_\epsilon) \hookrightarrow H_\epsilon^1$ and in a natural way we have that if $\chi \in H^1(\Omega_0)$ via the extension by zero outside Ω_0 we have $\chi \in H_\epsilon^1$. Hence, with certain abuse of notation we may say that if $\chi_\epsilon \in H^1_\epsilon$, $0 \leq \epsilon \leq \epsilon_0$, then $\chi_\epsilon \xrightarrow{\epsilon \to 0} \chi_0$ in H_ϵ^1 if $\|\chi_\epsilon - \chi_0\|_{H^1(\Omega_0)} + \|\chi_\epsilon\|_{H^1(\Omega_\epsilon \setminus \Omega_0)} \xrightarrow{\epsilon \to 0} 0$.

Definition 1. We will say that the family of domains Ω_ϵ converges spectrally to Ω_0 as $\epsilon \to 0$ if the eigenvalues and eigenprojections of the Neumann Laplacian behave continuously at $\epsilon = 0$. That is, for any fixed $n \in \mathbb{N}$ we have that $\lambda_n^\epsilon \rightarrow \lambda_0^n$ as $\epsilon \rightarrow 0$, and for each $n \in \mathbb{N}$ such that $\lambda_n^0 < \lambda_{n+1}^0$ the spectral projections $P_n^\epsilon : L^2(\mathbb{R}^N) \rightarrow H^1(\Omega_\epsilon)$, $P_n^\epsilon(\psi) = \sum_{i=1}^{n} (\phi_i^\epsilon, \psi)_{L^2(\Omega_\epsilon), \phi_i^\epsilon}$, satisfy
\[\sup \{ \|P_n^\epsilon(\psi) - P_n^0(\psi)\|_{H_\epsilon^1}, \psi \in L^2(\mathbb{R}^N), \|\psi\|_{L^2(\mathbb{R}^N)} = 1 \} \xrightarrow{\epsilon \to 0} 0. \]

The convergence of the spectral projections is equivalent to the following: for each sequence $\epsilon_k \to 0$ there exists a subsequence, that we denote again by ϵ_k, and a complete system of orthonormal eigenfunctions of the limiting problem $\{ \phi_n^0 \}_{n=1}^\infty$ such that $\|\phi_n^{\epsilon_k} - \phi_n^0\|_{H_\epsilon^{1,k}} \rightarrow 0$ as $k \rightarrow \infty$.

In order to write down the characterization, we need to consider the following quantity:
\[\tau_\epsilon = \min_{\phi \in H^1(\Omega_\epsilon), \phi = 0 \text{ in } \Omega_\epsilon} \frac{\int_{\Omega_\epsilon} |\nabla \phi|^2}{\int_{\Omega_\epsilon} |\phi|^2}. \tag{2.1} \]

Observe that τ_ϵ is the first eigenvalue of the following problem with a combination of Dirichlet and Neumann boundary conditions:
\[\begin{cases} -\Delta u = \tau u, & \Omega_\epsilon \setminus \bar{\Omega}_0, \\ u = 0, & \partial \Omega_0, \\ \frac{\partial u}{\partial n} = 0, & \partial \Omega_\epsilon \setminus \partial \Omega_0. \end{cases} \]

We can prove the following assertion.

Proposition 1. A necessary and sufficient condition for the spectral convergence of Ω_ϵ to Ω_0 is
\[\tau_\epsilon \xrightarrow{\epsilon \to 0} +\infty. \tag{2.2} \]
We refer to [Ar95] and [ArCa04] for a proof of this result.

Remark 1. The fact that \(\Omega_0 \subset \Omega_\epsilon \) can be relaxed. It is enough asking that for each compact set \(K \subset \Omega_0 \) there exists \(\epsilon(K) \) such that \(K \subset \Omega_\epsilon \) for \(0 < \epsilon \leq \epsilon(K) \), see [ArCa04].

2.3 Measure Convergence of the Domains

In this section we provide an answer to the first question. Observe that in Proposition 1 we do not require that \(|\Omega_\epsilon \setminus \Omega_0| \xrightarrow{\epsilon \to 0} 0 \). However, we have the following.

Corollary 1. In the situation above if \(\Omega_\epsilon \) converges spectrally to \(\Omega_0 \), then necessarily \(|\Omega_\epsilon \setminus \Omega_0| \xrightarrow{\epsilon \to 0} 0 \).

Proof. This result is proved in [ArCa04], but for the sake of completeness and since it is a simple proof, we include it here.

If this were not true, then we would have a positive \(\eta > 0 \) and a sequence \(\epsilon_k \to 0 \) such that \(|\Omega_{\epsilon_k} \setminus \Omega_0| \geq \eta \). Let \(\rho = \rho(\eta) \) be a small number such that \(|\{x \in \mathbb{R}^N \setminus \Omega_0, \text{dist}(x, \Omega_0) \leq \rho\}| \leq \eta/2 \). This implies that \(|\{x \in \Omega_{\epsilon_k}, \text{dist}(x, \Omega_0) \geq \rho\}| \geq \eta/2 \). Let us construct a smooth function \(\gamma \) with \(\gamma = 0 \) in \(\Omega_0 \), and \(\gamma(x) = 1 \) for \(x \in \mathbb{R}^N \setminus \Omega_0 \) with \(\text{dist}(x, \Omega_0) \geq \rho \). Then obviously \(\gamma \in H^1(\Omega_{\epsilon_k}) \) with \(\|\nabla \gamma\|_{L^2(\Omega_{\epsilon_k})} \leq C \) and \(\|\gamma\|_{L^2(\Omega_{\epsilon_k})} \geq (\eta/2)^{1/2} \).

This implies that \(\tau_{\epsilon_k} \) is bounded. Hence, it is not true that \(\tau_{\epsilon_k} \xrightarrow{\epsilon \to 0} +\infty \) and, therefore, from Proposition 1, we do not obtain the spectral convergence.

In particular, this result implies that the answer to question (Q1) is affirmative. That is, if we have the convergence of Neumann eigenvalues and eigenfunctions, necessarily we have that \(|\Omega_\epsilon \setminus \Omega_0| \xrightarrow{\epsilon \to 0} 0 \).

2.4 Distance Convergence of the Domains

In this section we will provide an answer to question (Q2), and we will see that the answer is No. We will prove this by constructing an example of a fixed domain \(\Omega_0 \) and a sequence of domains \(\Omega_\epsilon \) with \(\Omega_0 \subset \Omega_\epsilon \) with the property that \(\text{dist}(\Omega_\epsilon, \Omega_0) \) does not converges to 0, but the eigenvalues and eigenfunctions of the Laplace operator with Neumann boundary conditions in \(\Omega_\epsilon \) converge to the ones in \(\Omega_0 \), see Definition 1.

As a matter of fact, in [ArCa04, Section 5.2] a very particular example of a dumbbell domain (two disconnected domains joined by a thin channel) is provided so that the eigenvalues from the dumbbell converge to the eigenvalues of the two disconnected domains and no spectral contribution from the channel is observed. In this chapter we will obtain a family of channels for which the
Let us consider a fixed domain $\Omega_0 \subset \mathbb{R}^N$ which satisfies $\Omega_0 \subset \{ x \in \mathbb{R}^N, x_1 < 0 \}$ and such that

$$\Omega_0 \cap \{ x = (x_1, x') \in \mathbb{R} \times \mathbb{R}^{N-1}, -1 < x_1 < 1, |x'| \leq \rho \}$$

$$= \{ x = (x_1, x') \in \mathbb{R} \times \mathbb{R}^{N-1}, -1 < x_1 < 0, |x'| \leq \rho \}$$

for some fixed $\rho > 0$.

We will construct Ω_ε as $\Omega_\varepsilon = \text{int}(\bar{\Omega}_0 \cup \bar{R}_\varepsilon)$, where R_ε is given as follows:

$$R_\varepsilon = \{ (x_1, x') \in \mathbb{R} \times \mathbb{R}^{N-1} : 0 < x_1 < L, |x'| < g_\varepsilon(x_1) \},$$

(2.3)

where the function g_ε will be chosen so that $g_\varepsilon > 0$, $g_\varepsilon \in C^1([0, L])$, and $g_\varepsilon \to 0$ uniformly on $[0, L]$; see Figure 2.1. For the sake of notation, we denote by $\Gamma^\varepsilon_0 = \partial R_\varepsilon \cap \{ x_1 = 0 \}$ and $\Gamma^\varepsilon_L = \partial R_\varepsilon \cap \{ x_1 = L \}$.

![Fig. 2.1. The exterior perturbation R_ε. The thick line refers to the supplementary Dirichlet condition in the problem (2.4), while Neumann boundary conditions are imposed elsewhere.](image)

We refer to [Ra95] for a general reference on the behavior of solutions of partial differential equations on thin domains. See also the recent survey [Gr08] for a study on the spectrum of the Laplacian on thin tubes in various settings, and for many related references.

Observe that if L is fixed, then $\text{dist}(\Omega_\varepsilon, \Omega_0) = L$ for each $0 < \varepsilon \leq \varepsilon_0$. Moreover, we will show that for certain choices of g_ε we obtain the spectral
convergence of the Laplace operator. To prove this result, we use Proposition 1 and show that \(\tau_\epsilon \to +\infty \). Notice that \(\tau_\epsilon \), defined in (2.1) is the first eigenvalue of

\[
\begin{cases}
-\Delta u = \tau u, & R_\epsilon, \\
u = 0, & \Gamma_0^\epsilon, \\
\frac{\partial u}{\partial n} = 0, & \partial R_\epsilon \setminus \Gamma_0^\epsilon.
\end{cases}
\]

(2.4)

Since we have Neumann boundary conditions on the lateral boundary of \(R_\epsilon \), there clearly exist profiles of \(g_\epsilon \) for which \(\tau_\epsilon \) remains uniformly bounded as \(\epsilon \to 0 \). In fact, a simple trial-function argument shows that \(\tau_\epsilon \leq \frac{\pi}{2} / (2L)^2 \) whenever \(g_\epsilon(s) \geq g_\epsilon(0) \) for every \(s \in [0, L] \). The idea to get \(\tau_\epsilon \to +\infty \) consists in choosing a rapidly decreasing function \(s \mapsto g_\epsilon(s) \), which enables one to get a large contribution to \(\tau_\epsilon \) coming from the longitudinal energy due to the approaching Dirichlet and Neumann boundary conditions in the limit \(\epsilon \to 0 \).

Let us notice that a similar trick to employ the repulsive contribution of such a combination of the boundary conditions has been used recently in [KoKr08] to establish a Hardy-type inequality in a waveguide; see also [Kr09] for eigenvalue asymptotics in narrow curved strips with combined Dirichlet and Neumann boundary conditions. In our case, we are able to show the following.

Proposition 2. With the notation above, for any function \(\gamma \in C^2([0, L]) \) satisfying

\[
0 < \alpha_0 \leq \gamma \leq \gamma_1 < 1, \quad \dot{\gamma}(L) \leq 0, \quad \text{and} \quad \ddot{\gamma} \geq \alpha_2 > 0 \quad (2.5)
\]

for some positive numbers \(\alpha_0 \), \(\alpha_1 \), and \(\alpha_2 \), if we define \(g_\epsilon = \gamma^{1/\epsilon} \) we have that \(\tau_\epsilon \to +\infty \).

In particular, applying Proposition 1 we obtain the convergence of the eigenvalues and eigenfunctions of the Neumann Laplacian in \(\Omega_\epsilon \) to the ones in \(\Omega_0 \).

Remark 2. Observe that a function \(\gamma \) satisfying (2.5) necessarily satisfies \(\dot{\gamma}(s) < 0 \) for \(0 \leq s < L \). Hence, the function \(\gamma \) is decreasing.

Proof. Since \(\tau_\epsilon \) is given by minimization of the Rayleigh quotient,

\[
\tau_\epsilon = \inf_{\substack{\phi \in H^1(R_\epsilon) \\ \phi = 0 \text{ in } \Gamma_0^\epsilon}} \frac{\int_{R_\epsilon} |\nabla \phi|^2 \, dx}{\int_{R_\epsilon} |\phi|^2 \, dx},
\]

we analyze the integral \(\int_{R_\epsilon} |\nabla \phi|^2 \) for a smooth real-valued function \(\phi \) with \(\phi = 0 \) in a neighborhood of \(\Gamma_0^\epsilon \). We have

\[
\int_{R_\epsilon} |\nabla \phi|^2 = \int_0^L \int_{|x'| < g_\epsilon(x_1)} (|\phi_{x_1}|^2 + |\nabla_{x'} \phi|^2) \, dx' \, dx_1.
\]
Considering the change of variables \(x_1 = y_1, \; x' = g_\epsilon(y_1)y' \) which transforms \((x_1, x') \in R_\epsilon \) into \((y_1, y') \in Q \), where \(Q \) is the cylinder \(Q = \{(y_1, y') : 0 < y_1 < L, \; |y'| < 1\} \) and performing this change of variables in the integral above, elementary calculations show that

\[
\int_{R_\epsilon} |\nabla \phi|^2 = \int_Q \left[\left(\varphi_{y_1} - \frac{\dot{g}_\epsilon}{g_\epsilon} \sum_{i=2}^{N} y_i \varphi_{y_i} \right)^2 + \frac{1}{g_\epsilon^2} \sum_{i=2}^{N} |\varphi_{y_i}|^2 \right] g_\epsilon^{N-1} dy,
\]

where \(\varphi(y) = \phi(y_1, g_\epsilon(y_1)y') \).

Writing the above expression in terms of the new function \(\psi(y) = g_\epsilon(y_1)^{\frac{N-1}{2}} \varphi(y) \) so that

\[
g_\epsilon^{(N-1)/2} \varphi_{y_i} = \psi_{y_i}, \quad i = 2, \ldots, N,
\]

\[
g_\epsilon^{(N-1)/2} \varphi_{y_1} = - \frac{N - 1 - \dot{g}_\epsilon}{2 g_\epsilon} \psi + \psi_{y_1},
\]

we get

\[
\int_{R_\epsilon} |\nabla \phi|^2 = \int_Q \left[\left(\frac{N - 1 - \dot{g}_\epsilon}{2} g_\epsilon \psi + \psi_{y_1} - \frac{\dot{g}_\epsilon}{g_\epsilon} \sum_{i=2}^{N} y_i \psi_{y_i} \right)^2 + \frac{1}{g_\epsilon^2} \sum_{i=2}^{N} |\psi_{y_i}|^2 \right] dy
\]

\[
= \int_Q \left[\left(\frac{N - 1 - \dot{g}_\epsilon}{2} g_\epsilon \psi \right)^2 + \left(\psi_{y_1} - \frac{\dot{g}_\epsilon}{g_\epsilon} \sum_{i=2}^{N} y_i \psi_{y_i} \right)^2 - (N - 1) \frac{\dot{g}_\epsilon}{g_\epsilon} \psi \psi_{y_1} \right]
\]

\[
+ (N - 1) \frac{\dot{g}_\epsilon^2}{g_\epsilon^2} \sum_{i=2}^{N} y_i \psi_{y_i} \psi + \frac{1}{g_\epsilon^2} \sum_{i=2}^{N} |\psi_{y_i}|^2 \right] dy,
\]

\[
\geq \int_Q \left[\left(\frac{N - 1}{2} \right)^2 \frac{\dot{g}_\epsilon^2}{g_\epsilon^2} \psi^2 - (N - 1) \frac{\dot{g}_\epsilon}{g_\epsilon} \psi \psi_{y_1} \right]
\]

\[
+ (N - 1) \frac{\dot{g}_\epsilon^2}{g_\epsilon^2} \sum_{i=2}^{N} y_i \psi_{y_i} \psi + \frac{1}{g_\epsilon^2} \sum_{i=2}^{N} \psi_{y_i}^2 \right] dy
\]

where we have used \((\psi_{y_1} - \sum_{i=2}^{N} y_i \psi_{y_i} \frac{\dot{g}_\epsilon}{g_\epsilon})^2 \geq 0\). Via integration by parts in the second and third terms above, we get

\[
\int_Q - (N - 1) \frac{\dot{g}_\epsilon}{g_\epsilon} \psi \psi_{y_1} \psi \psi_{y_1} dy = \int_{|y'|<1} \int_{0}^{L} - (N - 1) \frac{\dot{g}_\epsilon}{2g_\epsilon} (\psi^2)_{y_1} dy_1 dy'
\]

\[
= \int_{|y'|<1} \left[- \left((N - 1) \frac{\dot{g}_\epsilon}{2g_\epsilon} \psi^2 \right)_{y_1 = L} \right] + \int_{0}^{L} (N - 1) \left(\frac{\dot{g}_\epsilon}{2g_\epsilon} \right)' \psi^2 dy_1 \right) dy'
\]

\[
= - \int_{|y'|<1} \left((N - 1) \frac{\dot{g}_\epsilon(L)}{2g_\epsilon(L)} \psi^2(L, y') \right) dy' + \int_{Q} \frac{N - 1}{2} \left(\frac{\dot{g}_\epsilon}{g_\epsilon} - \frac{\dot{g}_\epsilon^2}{g_\epsilon^2} \right) \psi^2 dy.
\]
and
\[
\int_Q (N - 1) \frac{\hat{g}_c^2}{g_c^2} \sum_{i=2}^{N} y_i \psi_i \psi dy = \int_0^L (N - 1) \frac{\hat{g}_c^2}{g_c^2} \sum_{i=2}^{N} \int_{|y'|<1} y_i \frac{1}{2} (\psi^2)_y dy' dy_1
\]
\[
= \int_0^L \frac{N - 1}{2} \frac{\hat{g}_c^2}{g_c^2} \left(\int_{|y'|=1} \psi^2 - (N - 1) \int_{|y'|<1} \psi^2 dy' \right) dy_1.
\]
Hence, if we require that \(\hat{g}_c(L) \leq 0 \), we have
\[
\int_{R_\epsilon} |\nabla \phi|^2 \geq \int_Q \left[\frac{N - 1}{2} \frac{\hat{g}_c}{g_c} - \left(\left(\frac{N - 1}{2} \right)^2 + \frac{N - 1}{2} \right) \frac{\hat{g}_c^2}{g_c^2} \right] \psi^2 dy
\]
\[
+ \int_0^L \frac{N - 1}{2} \frac{\hat{g}_c^2}{g_c^2} \left(\int_{|y'|=1} \psi^2 dy' \right) dy_1 + \int_0^L \frac{1}{g_c^2} \sum_{i=2}^{N} \psi_i^2 dy_1.
\] (2.6)
The last two terms in this expression can be written as
\[
\int_0^L \frac{1}{g_c^2}(y_1) \left(\int_{|y'|\leq1} |\nabla y' \psi|^2 + \frac{N - 1}{2} \frac{\hat{g}_c}{g_c} \int_{|y'|=1} \psi^2 \right) dy_1
\]
and we have that
\[
\int_{|y'|\leq1} |\nabla y' \psi|^2 + \frac{N - 1}{2} \frac{\hat{g}_c}{g_c} \int_{|y'|=1} \psi^2 \geq \rho \int_{|y'|\leq1} \psi^2
\]
with \(\rho = \rho(y_1) \) being the first eigenvalue of the problem
\[
\begin{cases}
-\Delta y' \psi = \rho \psi, & |y'| < 1, \\
\frac{\partial \psi}{\partial n} + \frac{N - 1}{2} \frac{\hat{g}_c}{g_c} (y_1) \psi = 0, & |y'| = 1,
\end{cases}
\]
where \(n \) denotes the outward unit normal vector field to the \((N - 2)\)-dimensional unit sphere \(S_1 = \{ y' \in \mathbb{R}^{N-1} : |y'| = 1 \} \).

We claim that if we denote by \(\lambda(\eta) \) the first eigenvalue of
\[
\begin{cases}
-\Delta y' \psi = \lambda \psi, & |y'| < 1, \\
\frac{\partial \psi}{\partial n} + \eta \psi = 0, & |y'| = 1,
\end{cases}
\]
we have that \(\frac{\lambda(\eta)}{\eta} \to \frac{|S_1|}{|B_1|} \) as \(\eta \to 0 \), where \(B_1 \) is the \((N - 1)\)-dimensional unit ball and \(S_1 \) its surface, which satisfy \(|S_1| = (N - 1)|B_1| \). As a matter of fact, by a standard continuity result, we know that \(\lambda(\eta) \to 0 \) and its eigenfunction \(\psi_\eta \), which is radially symmetric, converges to the constant function \(\frac{1}{\sqrt{|B_1|}} \), which is the first eigenfunction of the Neumann eigenvalue problem. But
\[
\lambda(\eta) = \int_{B_1} |\nabla y' \psi_\eta|^2 + \eta \int_{S_1} |\psi_\eta|^2 \geq \eta \int_{S_1} |\psi_\eta|^2,
\]
which implies that
\[
\frac{\lambda(\eta)}{\eta} \geq \int_{S_1} |\psi_\eta|^2 \to \frac{|S_1|}{|B_1|}.
\]

Moreover, using \(\psi = 1/\sqrt{|B_1|} \) as a test function in the Rayleigh quotient for \(\lambda(\eta) \), we immediately obtain \(\lambda(\eta) \leq \eta |S_1| / |B_1| \). This proves our claim. In particular, given \(\delta > 0 \) small, we can choose \(\eta_0 = \eta_0(\delta) \) such that \(\lambda(\eta) > (N - 1 - \delta)\eta \) for \(0 < \eta \leq \eta_0 \).

Therefore, if we choose the function \(g_\epsilon \) such that \(\dot{g}_\epsilon(y_1) \to 0 \) uniformly in \(y_1 \in [0, L] \), we have that \(\rho(y_1) \geq \frac{(N - 1)(N - 1 - \delta)}{2} \dot{g}_\epsilon^2(y_1) \) for \(\epsilon \) small enough.

Hence,
\[
\int_{R_\epsilon} |\nabla \phi|^2 \geq \int_Q \left\{ \frac{N - 1}{2} \frac{\dot{g}_\epsilon}{g_\epsilon} - \left[\frac{(N - 1)}{2} \right]^2 \right. \\
- \left. \frac{(N - 1)(N - 1 - \delta)}{2} + \frac{N - 1}{2} \frac{\dot{g}_\epsilon^2}{g_\epsilon^2} \right\} \psi^2 dy \\
= \frac{N - 1}{2} \int_Q \left\{ \frac{\dot{g}_\epsilon}{g_\epsilon} - \left[\frac{N - 1}{2} - (N - 1 - \delta) + 1 \right] \frac{\dot{g}_\epsilon^2}{g_\epsilon^2} \right\} \psi^2 dy
\]
and observe that the number \(\kappa = \frac{N - 1}{2} - (N - 1 - \delta) + 1 \) is strictly less than one for all values of \(N \geq 2 \) choosing a fixed and small \(\delta > 0 \). If we denote
\[
m_\epsilon = \inf_{0 \leq y_1 \leq L} \left(\frac{\dot{g}_\epsilon}{g_\epsilon} - \kappa \frac{\dot{g}_\epsilon^2}{g_\epsilon^2} \right),
\]
then
\[
\int_{R_\epsilon} |\nabla \phi|^2 \geq \frac{N - 1}{2} m_\epsilon \int_Q \psi^2 = \frac{N - 1}{2} m_\epsilon \int_{R_\epsilon} \phi^2.
\]

Consequently, \(\tau_\epsilon \geq \frac{N - 1}{2} m_\epsilon \).

Let us see that we can make a choice of the family of functions \(g_\epsilon \), satisfying the two previous conditions we have imposed, that is, \(\dot{g}_\epsilon(L) \leq 0 \) and \(\dot{g}_\epsilon(y_1) \to 0 \) uniformly in \(0 \leq y_1 \leq L \) such that \(m_\epsilon \to +\infty \) as \(\epsilon \to 0 \).

Let us choose a function \(\gamma \in C^2([0, L]) \) satisfying (2.5) and let \(g_\epsilon = \gamma^{1/\epsilon} \). Then, we have
\[
\dot{g}_\epsilon = \frac{1}{\epsilon} \gamma^{1/\epsilon - 1} \dot{\gamma}, \quad \ddot{g}_\epsilon = \frac{1}{\epsilon} \left(\frac{1}{\epsilon} - 1 \right) \gamma^{1/\epsilon - 2} \dot{\gamma}^2 + \frac{1}{\epsilon} \gamma^{1/\epsilon - 1} \ddot{\gamma},
\]
and simple calculations show that
\[
\frac{\ddot{g}_\epsilon}{g_\epsilon} - \kappa \frac{\dot{g}_\epsilon^2}{g_\epsilon^2} = \left[\frac{1}{\epsilon} \left(\frac{1}{\epsilon} - 1 \right) - \kappa \left(\frac{1}{\epsilon} \right)^2 \right] \left(\frac{\dot{\gamma}}{\gamma} \right)^2 + \frac{\ddot{\gamma}}{\epsilon \gamma} \geq \frac{\alpha_2}{\alpha_0} \frac{1}{\epsilon}
\]
for \(\epsilon > 0 \) small enough so that \(\frac{1}{\epsilon} \left(\frac{1}{\epsilon} - 1 \right) - \kappa \left(\frac{1}{\epsilon} \right)^2 \geq 0 \). This shows that \(m_\epsilon \to +\infty \) and it proves the proposition.
Remark 3. Now that we have been able to construct a thin domain \(R_\epsilon \) as in (2.3) such that \(\tau_\epsilon \xrightarrow{\epsilon \to 0} +\infty \), we can construct another thin domain \(\tilde{R}_\epsilon \) such that its “length” goes to infinity, its width goes to zero, and still \(\tilde{\tau}_\epsilon \xrightarrow{\epsilon \to 0} +\infty \), where \(\tilde{\tau}_\epsilon \) is the first eigenvalue of (2.4) in \(\tilde{R}_\epsilon \) instead of \(R_\epsilon \).

For this, let \(R_\epsilon \) be a thin domain constructed as in Proposition 2 and let \(\rho_\epsilon \) be a sequence with \(\rho_\epsilon \rightarrow +\infty \) such that \(\frac{\tau_\epsilon}{\rho_\epsilon} \rightarrow +\infty \) and \(\alpha_1^{1/\epsilon}\rho_\epsilon \rightarrow 0 \). Define \(\tilde{R}_\epsilon = \rho_\epsilon R_\epsilon \), that is,

\[
\tilde{R}_\epsilon = \{(x_1, x') : 0 < x_1 < \rho_\epsilon L, |x'| < \rho_\epsilon g_\epsilon(x_1)\},
\]

then \(0 < \rho_\epsilon g_\epsilon(x_1) \leq \alpha_1^{1/\epsilon}\rho_\epsilon \xrightarrow{\epsilon \to 0} 0 \) and \(\tilde{\tau}_\epsilon = \frac{\tau_\epsilon}{\rho_\epsilon} \xrightarrow{\epsilon \to 0} +\infty \).

Observe that if we also require a Dirichlet boundary condition in \(\Gamma^*_L \), we can relax the conditions on \(\gamma \) in Proposition 2 and in particular the condition \(\dot{\gamma}(L) \leq 0 \) can be dropped. Hence, we can show the following.

Corollary 2. With the notation above, for any function \(\gamma \in C^2([0, L]) \) satisfying

\[
0 < \alpha_0 \leq \gamma \leq \alpha_1 < 1, \quad \text{and} \quad \dot{\gamma} \geq \alpha_2 > 0
\]

for some positive numbers \(\alpha_0, \alpha_1, \) and \(\alpha_2 \), if we define \(g_\epsilon = \gamma^{1/\epsilon} \) we have \(\tilde{\tau}_\epsilon \xrightarrow{\epsilon \to 0} +\infty \), where \(\tilde{\tau}_\epsilon \) is the first eigenvalue of

\[
-\Delta u = \tau u, \quad R_\epsilon, \\
u = 0, \quad \Gamma^*_0 \cup \Gamma^*_L, \\
\frac{\partial u}{\partial n} = 0, \quad \partial R_\epsilon \setminus (\Gamma^*_0 \cup \Gamma^*_L).
\]

Proof. This follows easily by a Neumann bracketing argument. More precisely, from the hypotheses, \(\dot{\gamma} \) is a strictly increasing function. Hence, either \(\gamma \) is strictly monotone in \((0, L), \) or there exists a unique \(L^* \in (0, L) \) such that \(\dot{\gamma}(L^*) = 0 \).

In the first case, if \(\gamma \) is decreasing (respectively increasing) we substitute the Dirichlet boundary condition at \(\Gamma^*_L \) (respectively at \(\Gamma^*_0 \)) by a Neumann one. Then the new eigenvalue problem gives rise to \(\tau_\epsilon \) defined exactly in the same way as (2.4) (modulo possibly a mirroring of \(R_\epsilon \)), and we have \(\tilde{\tau}_\epsilon \geq \tau_\epsilon \rightarrow +\infty \) as \(\epsilon \rightarrow 0 \).

In the second case, we cut the domain \(R_\epsilon \) in two domains \(R^0_\epsilon = R_\epsilon \cap \{0 < x_1 < L^*\} \), \(R^1_\epsilon = R_\epsilon \cap \{L^* < x_1 < L\} \). We know that \(\tilde{\tau}_\epsilon \geq \inf\{\tau^0_\epsilon, \tau^1_\epsilon\} \), where \(\tau^0_\epsilon \) and \(\tau^1_\epsilon \) are the corresponding eigenvalues in \(R^0_\epsilon \) and \(R^1_\epsilon \) with a Neumann boundary condition imposed at the newly created boundary \(R_\epsilon \cap \{x_1 = L^*\} \) on both domains. In both domains we can apply Proposition 2 as in the first case so that \(\tau^0_\epsilon, \tau^1_\epsilon \xrightarrow{\epsilon \to 0} +\infty \), which implies \(\tilde{\tau}_\epsilon \rightarrow 0 \).

Remark 4. This corollary recovers and generalizes the results from Section 5.2 in [ArCa04].
Acknowledgement. J.M. Arrieta has been partially supported by Grants PHB2006-003-PC and MTM2006-08262 from MEC and by “Programa de Financiación de Grupos de Investigación UCM-Comunidad de Madrid CCG07-UCM/ESP-2393. Grupo 920894” and SIMUMAT-Comunidad de Madrid, Spain.

D. Krejčiřík has been partially supported by the Czech Ministry of Education, Youth and Sports within the project LC06002.

References

Integral Methods in Science and Engineering, Volume 1
Analytic Methods
Perez, M.E. (Ed.)
2010, XIV, 336 p. 8 illus., Hardcover
A product of Birkhäuser Basel