Preface

Because of the increasing complexity and growth of real-world networks, their analysis by using classical graph-theoretic methods is oftentimes a difficult procedure. Thus, there is a strong need to combine graph-theoretic methods with mathematical techniques from other scientific disciplines, such as machine learning, statistics, and information theory, for analyzing complex networks more adequately.

The book Structural Analysis of Complex Networks presents theoretical as well as practice-oriented results for structurally exploring complex networks. Hence, the book does not only focus on classical graph-theoretical methods, it also shows the usefulness and potential of structural graph theory as a tool for solving interdisciplinary problems. Special emphasis is given to methods and areas which can be roughly summarized as follows:

- Graph-theoretical applications in, e.g., structural biology, computational biology, mathematical chemistry, and computational linguistics;
- Graph classes;
- General structural properties of networks;
- Graph colorings;
- Graph polynomials;
- Information measures for graphs, e.g., graph entropies;
- Metrical properties of graphs;
- Partitions and decompositions;
- Quantitative graph measures.

This book is intended for an interdisciplinary audience, covering topics from artificial intelligence, computer science, computational and systems biology, cognitive science, computational linguistics, discrete mathematics, machine learning, mathematical chemistry, and statistics, and it contains nineteen chapters that have been peer-reviewed according to the standards of international journals in applied mathematics. The chapters and some of their interrelations can be briefly described as follows.

Emmert-Streib starts the volume by surveying basic structural properties of complex networks, important graph classes, and graph measures used when performing network analysis quantitatively. The latter relates to determining the structural similarity between graphs and their structural complexity using entropic measures.
Further concepts used to explore networks structurally are provided by the next chapters authored by Borowiecki, Goddard et al., and Ananchuen et al. In particular, these chapters present techniques of graph partitioning, distances in graphs, and domination in graphs, respectively. The chapter written by Fujii also discusses entropy measures, but for infinite directed graphs. However, these measures are obtained by using operator theory and, hence, are differently defined than the ones presented in the chapter by Emmert-Streib; those are derived based on Shannon’s entropy and can be interpreted as the structural information content of a graph. Then, the chapters authored by Matsumoto, Kovář, and Brešar et al. investigate multifaceted problems, like exploring infinite labeled graphs to study presentations of symbolic dynamical systems, special graph decompositions, and the examination of geodetic sets in graphs, which represents an important problem using metrical properties of graphs. Ellis-Monaghan et al. provide two chapters in this volume on graph polynomials: The first one emphasizes the Tutte polynomial and some closely related graph polynomials. The second chapter by Ellis-Monaghan et al. sheds light on interpretations of concrete polynomials and on interrelations between other graph polynomials and the Tutte polynomial. The problem of reconstructing graphs by examining specific properties of polynomials, here, the zeros of Krawtchouk polynomials, is tackled in the next chapter by Stoll. Quantitative methods to calculate the structural similarity or distance between two graphs have already been mentioned in Emmert-Streib’s chapter. In particular, classical measures based on determining isomorphic subgraphs have already been mentioned there. The chapter written by Lauri treats the graph similarity problem in a similar manner, namely based on the number of common vertex-deleted subgraphs, and examines aspects of the computational complexity for calculating the mentioned graph similarity measure. The idea of defining structural distances between graphs is tackled in the next chapter, written by Benadé. More precisely, a chromatic metric is defined, and, remarkably, by applying this metric, the maximum distance between any two graphs is at most three.

The last six chapters of this volume use graph-theoretic techniques to solve challenging problems in, e.g., applied mathematics, computer science, quantum chemistry, electrical engineering, computational linguistics, structural biology and RNA structure analysis, computational biology, and mathematical chemistry. The chapter authored by Cioabă gives a broad overview on results for relating important structural properties of a graph to its eigenvalues. Also, Cioabă surveys important applications of graph spectra in subfields of the just-mentioned disciplines. To demonstrate the great potential of novel graph classes within computational linguistics, Mehler introduces a graph class consisting of hierarchical graphs called Minimum Spanning Markovian Trees and shows its usefulness by outlining concrete applications within semiotic network analysis. The chapter contributed by Scripps et al. starts by reviewing techniques to mine general complex networks, but mainly focuses on link-based classification, which often appears as an important problem in Web mining. The next two chapters, authored by Washietl et al. and Mason et al., explore graph-based problems in structural and computational biology, respectively. In particular, Washietl et al. investigate RNA structures represented by
graphs and review graph-theoretical methods for describing and comparing such structures. A problem that is currently of considerable interest in biological network analysis is addressed by Mason et al. and deals with surveying methods for predicting protein function based on complex interaction networks. An area in which graph-theoretical models and techniques have been intensely applied so far is mathematical chemistry. The volume concludes by presenting a chapter about a graph class that is meaningful in mathematical chemistry: Vukičević presents techniques for determining the existence and enumeration of what are called perfect matchings that correspond to Kekulé structures, which are well known in mathematical chemistry.

Many colleagues, whether consciously or unconsciously, provided input, help, and support before and during the formation of this book. In particular, I would like to thank Hamid Arabnia, Alireza Ashrafi, Alexandru T. Balaban, Subhash Basak, Igor Bass, Agnieszka Bergel, David Bialy, Danail Bonchev, Stefan Borgert, Mieczysław Borowiecki, Monique Borusiak, Ulrike Brandt, Mathieu Dutour, Michael Drmota, Abdol-Hossein Esfahanian, Maria Fonoberova, Bernhard Gittenberger, Arno Homburg, Jürgen Kilian, Elena Konstantinova, Reinhard Kutzenigg, Dmitrii Lozovanu, Alexander Mehler, Tomáš Madaras, Abbe Mowshowitz, Marina Popovscaia, Fred Sobik, Stefan Shetschew, Doru Stefanescu, Thomas Stoll, Kurt Varmuza, Ilona Wesarg, Bohdan Zelinka, Dongxiao Zhu, and all authors and co-authors of this book. I apologize to any who inadvertently have not been named.

I am deeply grateful to Armin Graber from UMIT for his strong support and for providing such a stimulating working atmosphere. Many thanks to Isabella Fritz, Bernd Haas, Gerd Lorünser, Brigitte Senn-Kircher, and Klaus Weinberger for their help and fruitful discussions. Moreover, I thank Frank Emmert-Streib for the extremely fruitful collaboration and many stimulating discussions we had over several years. Frank also provided the figures used to design the front cover of this book.

In addition, I would like to thank editors Tom Grasso, Rebecca Biega, and Regina Gorenshteyn from Birkhäuser Publishing (Boston), who have always been available and helpful. Last but not least, I would like to thank my wife Jana and my family — Marion Dehmer-Sehn and Werner Dehmer — for their unfailing support and encouragement.

Finally, I hope that this book will help to extend the enthusiasm and joy that I feel for this field to others, and that it will inspire people to apply graph theory to different scientific areas for the solution of challenging and interdisciplinary problems.

Hall in Tirol, April 2010

Matthias Dehmer
Structural Analysis of Complex Networks
Dehmer, M. (Ed.)
2011, XIV, 486 p. 85 illus., Hardcover
ISBN: 978-0-8176-4788-9
A product of Birkhäuser Basel