Contents

Preface ... xiii

Part I Asymptotic Behavior of Solutions of Partial Differential Equations

1 Behavior Near Time Infinity of Solutions of the Heat Equation 3
 1.1 Asymptotic Behavior of Solutions Near Time Infinity 3
 1.1.1 Decay Estimate of Solutions ... 6
 1.1.2 L^p-L^q Estimates ... 8
 1.1.3 Derivative L^p-L^q Estimates ... 8
 1.1.4 Theorem on Asymptotic Behavior Near Time Infinity 10
 1.1.5 Proof Using Representation Formula of Solutions 11
 1.1.6 Integral Form of the Mean Value Theorem ... 12
 1.2 Structure of Equations and Self-Similar Solutions 13
 1.2.1 Invariance Under Scaling ... 13
 1.2.2 Conserved Quantity for the Heat Equation 14
 1.2.3 Scaling Transformation Preserving the Conserved Quantity 15
 1.2.4 Summary of Properties of a Scaling Transformation 15
 1.2.5 Self-Similar Solutions .. 16
 1.2.6 Expression of Asymptotic Formula Using Scaling Transformations 16
 1.2.7 Idea of the Proof Based on Scaling Transformation 17
 1.3 Compactness ... 18
 1.3.1 Family of Functions Consisting of Continuous Functions 19
 1.3.2 Ascoli–Arzelà-type Compactness Theorem ... 22
 1.3.3 Relative Compactness of a Family of Scaled Functions 22
 1.3.4 Decay Estimates in Space Variables ... 25
1.3.5 Existence of Convergent Subsequences 26
1.3.6 Lemma ... 27
1.4 Characterization of Limit Functions 27
 1.4.1 Limit of the Initial Data ... 28
 1.4.2 Weak Form of the Initial Value Problem for the Heat
 Equation ... 29
 1.4.3 Weak Solutions for the Initial Value Problem 30
 1.4.4 Limit of a Sequence of Solutions to the Heat Equation . 31
 1.4.5 Characterization of the Limit of a Family of Scaled
 Functions ... 32
 1.4.6 Uniqueness Theorem When Initial Data is the Delta
 Function ... 33
 1.4.7 Completion of the Proof of Asymptotic Formula (1.9)
 Based on Scaling Transformation 34
 1.4.8 Remark on Uniqueness Theorem 34

2 Behavior Near Time Infinity of Solutions
of the Vorticity Equations ... 37
 2.1 Navier–Stokes Equations and Vorticity Equations 38
 2.1.1 Vorticity .. 39
 2.1.2 Vorticity and Velocity 40
 2.1.3 Biot–Savart Law .. 41
 2.1.4 Derivation of the Vorticity Equations 42
 2.2 Asymptotic Behavior Near Time Infinity 42
 2.2.1 Unique Existence Theorem 43
 2.2.2 Theorem for Asymptotic Behavior of the Vorticity 44
 2.2.3 Scaling Invariance ... 44
 2.2.4 Conservation of the Total Circulation 45
 2.2.5 Rotationally Symmetric Self-Similar Solutions 46
 2.3 Global L^q-L^1 Estimates for Solutions of the Heat Equation
 with a Transport Term .. 47
 2.3.1 Fundamental L^q-L^r Estimates 47
 2.3.2 Change Ratio of L^r-Norm per Time: Integral Identities . 48
 2.3.3 Nonincrease of L^1-Norm 49
 2.3.4 Application of the Nash Inequality 50
 2.3.5 Proof of Fundamental L^q-L^1 Estimates 53
 2.3.6 Extension of Fundamental L^q-L^1 Estimates 55
 2.3.7 Maximum Principle ... 55
 2.3.8 Preservation of Nonnegativity 56
 2.4 Estimates for Solutions of Vorticity Equations 58
 2.4.1 Estimates for Vorticity and Velocity 58
 2.4.2 Estimates for Derivatives of the Vorticity 62
 2.4.3 Decay Estimates for the Vorticity in Spatial Variables .. 68
2.5 Proof of the Asymptotic Formula .. 72
 2.5.1 Characterization of the Limit Function as a Weak Solution 73
 2.5.2 Estimates for the Limit Function ... 76
 2.5.3 Integral Equation Satisfied by Weak Solutions .. 80
 2.5.4 Uniqueness of Solutions of Limit Equations 81
 2.5.5 Completion of the Proof of the Asymptotic Formula 83
2.6 Formation of the Burgers Vortex ... 84
 2.6.1 Convergence to the Burgers Vortex ... 85
 2.6.2 Asymmetric Burgers Vortices ... 87
2.7 Self-Similar Solutions of the Navier–Stokes Equations and Related Topics ... 88
 2.7.1 Short History of Research on Asymptotic Behavior of Vorticity 89
 2.7.2 Problems of Existence of Solutions ... 91
 2.7.3 Self-Similar Solutions ... 93
2.8 Uniqueness of the Limit Equation for Large Circulation 97
 2.8.1 Uniqueness of Weak Solutions ... 97
 2.8.2 Relative Entropy ... 98
 2.8.3 Boundedness of the Entropy .. 100
 2.8.4 Rescaling ... 100
 2.8.5 Proof of the Uniqueness Theorem ... 101
 2.8.6 Remark on Asymptotic Behavior of the Vorticity 102
3 Self-Similar Solutions for Various Equations 105
 3.1 Porous Medium Equation ... 105
 3.1.1 Self-Similar Solutions Preserving Total Mass 107
 3.1.2 Weak Solutions .. 108
 3.1.3 Asymptotic Formula ... 109
 3.2 Roles of Backward Self-Similar Solutions ... 109
 3.2.1 Axisymmetric Mean Curvature Flow Equation 110
 3.2.2 Backward Self-Similar Solutions and Similarity Variables 111
 3.2.3 Nonexistence of Nontrivial Self-Similar Solutions 114
 3.2.4 Asymptotic Behavior of Solutions Near Pinching Points 116
 3.2.5 Monotonicity Formula ... 121
 3.2.6 The Cases of a Semilinear Heat Equation and a Harmonic Map Flow Equation .. 125
 3.3 Nondiffusion-Type Equations ... 129
 3.3.1 Nonlinear Schrödinger Equations .. 130
 3.3.2 KdV Equation .. 132
 3.4 Notes and Comments ... 134
 3.4.1 A Priori Upper Bound ... 134
 3.4.2 Related Results on Forward Self-Similar Solutions 135
Part II Useful Analytic Tools

4 Various Properties of Solutions of the Heat Equation

- **4.1 Convolution, the Young Inequality, and \(L^p - L^q \) Estimates**
 - 4.1.1 The Young Inequality
 - 4.1.2 Proof of \(L^p - L^q \) Estimates
 - 4.1.3 Algebraic Properties of Convolution
 - 4.1.4 Interchange of Differentiation and Convolution
 - 4.1.5 Interchange of Limit and Differentiation
 - 4.1.6 Smoothness of the Solution of the Heat Equation
- **4.2 Initial Values of the Heat Equation**
 - 4.2.1 Convergence to the Initial Value
 - 4.2.2 Uniform Continuity
 - 4.2.3 Convergence Theorem
 - 4.2.4 Corollary
 - 4.2.5 Applications of the Convergence Theorem 4.2.3
- **4.3 Inhomogeneous Heat Equations**
 - 4.3.1 Representation of Solutions
 - 4.3.2 Solutions of the Inhomogeneous Equation: Case of Zero Initial Value
 - 4.3.3 Solutions of Inhomogeneous Equations: General Case
 - 4.3.4 Singular Inhomogeneous Term at \(t = 0 \)
- **4.4 Uniqueness of Solutions of the Heat Equation**
 - 4.4.1 Proof of the Uniqueness Theorem 1.4.6
 - 4.4.2 Fundamental Uniqueness Theorem
 - 4.4.3 Inhomogeneous Equation
 - 4.4.4 Unique Solvability for Heat Equations with Transport Term
 - 4.4.5 Fundamental Solutions and Their Properties
- **4.5 Integration by Parts**
 - 4.5.1 An Example for Integration by Parts in the Whole Space
 - 4.5.2 A Whole Space Divergence Theorem
 - 4.5.3 Integration by Parts on Bounded Domains

5 Compactness Theorems

- **5.1 Compact Domains of Definition**
 - 5.1.1 Ascoli–Arzelà Theorem
 - 5.1.2 Compact Embeddings
- **5.2 Noncompact Domains of Definition**
 - 5.2.1 Ascoli–Arzelà-Type Compactness Theorem
 - 5.2.2 Construction of Subsequences
 - 5.2.3 Equidecay and Uniform Convergence
 - 5.2.4 Proof of Lemma 1.3.6
 - 5.2.5 Convergence of Higher Derivatives
6 Calculus Inequalities ... 189
 6.1 The Gagliardo–Nirenberg Inequality and the Nash Inequality . 189
 6.1.1 The Gagliardo–Nirenberg Inequality 190
 6.1.2 The Nash Inequality 191
 6.1.3 Proof of the Nash Inequality 191
 6.1.4 Proof of the Gagliardo–Nirenberg Inequality
 (Case of \(\sigma < 1\)) 194
 6.1.5 Remarks on the Proofs 199
 6.1.6 A Remark on Assumption (6.3) 199
 6.2 Boundedness of the Riesz Potential 200
 6.2.1 The Hardy–Littlewood–Sobolev Inequality 200
 6.2.2 The Distribution Function and \(L^p\)-Integrability 201
 6.2.3 Lorentz Spaces ... 203
 6.2.4 The Marcinkiewicz Interpolation Theorem 203
 6.2.5 Gauss Kernel Representation of the Riesz Potential ... 209
 6.2.6 Proof of the Hardy–Littlewood–Sobolev Inequality ... 210
 6.2.7 Completion of the Proof 212
 6.3 The Sobolev Inequality ... 212
 6.3.1 The Inverse of the Laplacian \((n \geq 3)\) 212
 6.3.2 The Inverse of the Laplacian \((n = 2)\) 214
 6.3.3 Proof of the Sobolev Inequality \((r > 1)\) 216
 6.3.4 An Elementary Proof of the Sobolev Inequality \((r = 1)\) 217
 6.3.5 The Newton Potential 218
 6.3.6 Remark on Differentiation Under the Integral Sign 221
 6.4 Boundedness of Singular Integral Operators 222
 6.4.1 Cube Decomposition 222
 6.4.2 The Calderón–Zygmund Inequality 225
 6.4.3 \(L^2\) Boundedness 227
 6.4.4 Weak \(L^1\) Estimate 228
 6.4.5 Completion of the Proof 234
 6.5 Notes and Comments ... 234

7 Convergence Theorems in the Theory of Integration 239
 7.1 Interchange of Integration and Limit Operations 239
 7.1.1 Dominated Convergence Theorem 240
 7.1.2 Fatou’s Lemma ... 242
 7.1.3 Monotone Convergence Theorem 242
 7.1.4 Convergence for Riemann Integrals 243
 7.2 Commutativity of Integration and Differentiation 244
 7.2.1 Differentiation Under the Integral Sign 244
 7.2.2 Commutativity of the Order of Integration 245
 7.3 Bounded Extension .. 246

Answers to Exercises .. 249
Nonlinear Partial Differential Equations
Asymptotic Behavior of Solutions and Self-Similar Solutions
Giga, M.-H.; Giga, Y.; Saal, J.
2010, XVIII, 294 p. 7 illus., Hardcover
ISBN: 978-0-8176-4173-3
A product of Birkhäuser Basel