Errata: Prem K. Kythe: Computational Conformal Mapping
ISBN 0-8176-3996-9

Page 16, line 6: ‘An open’ should read ‘The open’.

Page 26, Eq (1.2.11) should read:

$$f(z_0) = -\frac{1}{i\pi} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z_0} \, d\zeta + 2f(\infty) \quad (1.2.11)$$

Page 43, line 3: $G = \{n\theta_0 + 2m\pi < \text{arg}\{w\} < n\theta_1 + 2m\pi\}$ should read $G = \{n\theta_0 + 2m\pi < \text{arg}\{w\} < n\theta_1 + 2m\pi\}$.

Page 55, lines 18 and 21: $(x + 11)$ should read $(x + 1)$

Page 94, Line 2 should read: $g \in L^2(D)$ with $g(a) = 0$, i.e,

Page 148, Eq (6.2.1) and page 149, line 1, should read:

$$G(z, z_0) = \frac{1}{2\pi} \log \frac{1}{r} + g(z, z_0), \quad r = |z - z_0|, \quad (6.2.1)$$

Page 149, line 1: $G(z, z_0)$ should be changed to $g(z, z_0)$.

Page 149: Eq (6.2.3) should read

$$\int_{\Gamma} \left(u \frac{\partial G}{\partial n} - G \frac{\partial u}{\partial n} \right) \, ds = \frac{1}{2\pi} \int_{\Gamma} u \frac{\partial \log \frac{1}{r}}{\partial n} \, ds + \int_{\Gamma} u \frac{\partial g}{\partial n} \, ds$$

$$- \frac{1}{2\pi} \int_{\Gamma} \frac{1}{r} \frac{\partial u}{\partial n} \, ds - \int_{\Gamma} g \frac{\partial u}{\partial n} \, ds \equiv I_1 + I_2 + I_3 + I_4. \quad (6.2.3)$$

Page 149, last two lines should read:

$u, g, \frac{\partial u}{\partial n}$ and $\frac{\partial g}{\partial n}$ are bounded in the neighborhood of the point z_0, we find that

$$|I_2| \leq \max_{\Gamma_r} \left| u \frac{\partial g}{\partial n} \right| \cdot 2\pi\varepsilon, \quad \text{and} \quad |I_4| \leq \max_{\Gamma_r} \left| g \frac{\partial u}{\partial n} \right| \cdot 2\pi\varepsilon.$$
Page 150, line 4: (6.2.5) should be changed to (6.2.4).

Page 161, Eq (6.5.8) and the following line should read:

\[N(z, z_0) = \log \frac{z - z_0}{\bar{z} - \bar{z}^*} + n(z, z_0), \quad (6.5.8) \]

where \(n(z, z_0) \) is a regular analytic function on \(D \).

Page 190: Fig 7.4.2 is

![Fig. 7.4.2.](image)

Page 199, line 6 and Page 200, line 10: \(L/\Gamma \) should read \(L^2(\Gamma) \).