Contents

1 Introduction .. 1

2 Problems, Classification and Structure of ARM Equipment 5
 Introduction .. 5
 Classification of Radio Monitoring Equipment 6
 Operation Zone Sizes 7
 Application .. 7
 Equipment Performance 8
 Design Constraints 8
 Radio Monitoring Equipment Design Philosophy 9
 Requirements for RM Equipment Technical Parameters 12
 Quality Criterion Selection 12
 Main Technical Parameters of RM Equipment 13
 Characteristics of RM Equipment Families 16
 Radio Monitoring and RES Location Detection Systems 16
 Stationary and Mobile RM Stations 16
 Portable RM Equipment 18
 Manpack ARM Equipment 19
 Conclusion .. 21
 References .. 22

3 Radio Receiver Applications for Radio Monitoring System 23
 Introduction .. 23
 Tuned Radio Receiver .. 23
 Main Radio Receiver Parameters 27
 Operating Frequency Range 28
 Amplitude-Frequency Response of the Linear Receive Path 28
 Voltage Standing Wave Ratio 29
 Main Channel and Spurious Channels 30
 RR Selectivity .. 34
 Inherent Noise and Receiver Sensitivity 36
 Sensitivity Increase with the Help of Pre-amplifiers 39
 Pre-amplifier Gain Factor Selection 42
 Receiver Multi-Signal Selectivity 43
Intermodulation Noise 43
Intercept Points on IP2 and IP3 Intermodulation 47
Intermodulation-Free Dynamic Range Determination 50
Attenuator Influence on the Intermodulation Value 51
Determining the Intercept Points 52
Blockage Effect .. 52
Crosstalk Distortions 53
Phase Noise and Retuning Rate of the Panoramic RR 54
Digital Radio Receivers 56
General Principles of Digital Radio Receiver Implementation 56
Types of ARM Receivers 58
Development of Russian Arm Systems 60
First- and Second-Generation Systems 60
Radio Receivers of the Third and Fourth Generation 62
Fifth-Generation Radio Receivers 66
ARK-CT1 Digital Radio Receiver 67
ARK-D1TP Digital Panoramic Measuring Receiver 73
ARK-CT3 Digital Receiver 75
ARK-KNV4 External Remote-Controlled Converter 79
ARK-PR5 “Argamak” Digital Radio Receiver 81
ARGAMAK-I Panoramic Measuring Receiver 93
Conclusion .. 93
References .. 94

4 Single-Channel and Multi-Channel Radio Signal Detection 95
Introduction .. 95
Single-Channel Signal Detection 97
Characteristics of Single-Channel Detection
of Narrow-Band Signals 105
Single-Channel Detection of Radio Signals With POFT 108
 Probabilistic Features of the Frequency Observation Time ... 109
 Probability of Separate Frequency Registration 111
 Estimate of the Total Number of Registered Frequencies ... 112
 Optimization of ARM System Parameters 113
 Detection Characteristics 115
Double-Channel Detection of Narrow-Band Signals 117
Comparison of Single-Channel and Double-Channel Processing 119
Conclusion .. 121
References .. 121

5 Multi-Channel Digital Receivers 123
Introduction .. 123
Panoramic Multi-Channel Receivers 123
ARK-D11 Double-Channel Complex 125
ARK-RD8M Multi-Channel Complex 126
SMO-MCRM Customized Software Package 130
<table>
<thead>
<tr>
<th>Usage of Radio Modems of the Cellular Communication Systems</th>
<th>331</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Exchange Implementation in Combined ARK-POM System</td>
<td>332</td>
</tr>
<tr>
<td>“Archa” Stationary Station</td>
<td>334</td>
</tr>
<tr>
<td>“Argument” Mobile Station</td>
<td>338</td>
</tr>
<tr>
<td>System-Wide Car Equipment</td>
<td>343</td>
</tr>
<tr>
<td>“Arena” Portable Station</td>
<td>346</td>
</tr>
<tr>
<td>“Arena” Station Structure</td>
<td>346</td>
</tr>
<tr>
<td>Mast Devices for Radio Monitoring Stations</td>
<td>347</td>
</tr>
<tr>
<td>Navigation Systems for Radio Monitoring Stations</td>
<td>349</td>
</tr>
<tr>
<td>Features of Modern Navigation Systems</td>
<td>350</td>
</tr>
<tr>
<td>Navigation Systems for Mobile Stations</td>
<td>355</td>
</tr>
<tr>
<td>Electric Power Supply Systems</td>
<td>356</td>
</tr>
<tr>
<td>Requirements for Electric Power Sources</td>
<td>356</td>
</tr>
<tr>
<td>Electric Power Sources for Radio Equipment</td>
<td>357</td>
</tr>
<tr>
<td>Secondary Electric Supply Sources</td>
<td>360</td>
</tr>
<tr>
<td>Example of Pulse Power Supply of Low Power</td>
<td>362</td>
</tr>
<tr>
<td>Multi-Channel Pulse Power Source</td>
<td>364</td>
</tr>
<tr>
<td>ARK-UPS12 Universal Power Supply Unit</td>
<td>365</td>
</tr>
<tr>
<td>Autonomous Electric Station Usage</td>
<td>369</td>
</tr>
<tr>
<td>Special Software Support and Operation Modes of Stations</td>
<td>372</td>
</tr>
<tr>
<td>Software Support Structure</td>
<td>372</td>
</tr>
<tr>
<td>“Spectrum” Mode</td>
<td>373</td>
</tr>
<tr>
<td>“Search” Mode</td>
<td>374</td>
</tr>
<tr>
<td>“Bearing” Mode</td>
<td>377</td>
</tr>
<tr>
<td>“Measurement” and “Technical Analysis” Modes</td>
<td>378</td>
</tr>
<tr>
<td>“Review” Mode</td>
<td>381</td>
</tr>
<tr>
<td>“Multi-Channel Direction Finding” Mode</td>
<td>382</td>
</tr>
<tr>
<td>Peculiarities of the Direction Finding of POFT Stations</td>
<td>383</td>
</tr>
<tr>
<td>“Electronic Map” Mode</td>
<td>385</td>
</tr>
<tr>
<td>Post-processing Mode</td>
<td>388</td>
</tr>
<tr>
<td>Conclusion</td>
<td>390</td>
</tr>
<tr>
<td>References</td>
<td>391</td>
</tr>
</tbody>
</table>

10 Radio Emission Source Localization Using Mobile Stations and Field Strength Measurement | 393 |
Introduction	393
Methods of RES Localization Using the Mobile Station	395
Drive Method	395
Quasi-Stationary Method	396
Method of Automatic Calculation of RES Coordinates	398
During Movement	398
Peculiarities of Multi-Channel Direction Finding	401
Simultaneous Direction Finding	402
Electromagnetic Field Strength Measurement	403
Main Mathematical Relations	404
Peculiarities of the Field Strength Distribution Estimation

- Field Strength Measurement .. 406
- On-Site Calculation of Field Strength Distribution 407
- District Topography ... 408
- Urban Build-Up ... 409
- Vegetation Influence .. 410
- Calculation of Field Strength in the SMO-KN Application 411
- Processing of Field Strength Measurements 412
- Determination of RES Location .. 413
- Checking Transmitters for Announced Parameters 414
- Calculation of Electromagnetic Compatibility 415

Conclusion

- References .. 424

11 Detection and Localization of Technical Channels of Information Leakage

- Introduction .. 427
- Main Search Stages for Electromagnetic Channels of Information Leakage ... 428
- Detection of Radio Signals Emitted in Monitored Premise 430
- Radio Signal Intensity in Near-Field and Far-Field Regions 431
- Generalized Structure of Equipment for TCIL Detection 432
- Comparison Technique for Signal Intensities 433
- Detection Algorithm for Radio Signal Sources in Monitored Area 434
- Detection Effectiveness Dependence on the Equipment and the Ways of “Standard” Panorama Obtaining 435
- Identification and Localization of Radio Microphones 437
- Distant Radio Monitoring Systems of Remote Premises 438
- Construction Principles of Remote Radio Monitoring Systems 439
- Examples of Remote Radio Monitoring Systems 440
- Peculiarities of ARK-D3T Remote Radio Monitoring System 441
- Peculiarities of the ARK-D9 Remote Radio Monitoring System 442
- Peculiarities of the ARK-D13 Remote Radio Monitoring System 443

Software for Remote Radio Monitoring Systems

- Purpose and Possibilities of SMO-DX Application 451
- Peculiarities of Radio Microphone Detection 452
- Joint Usage of the Various Detection Algorithms 453
- Radio microphone Localization Inside of Monitored Premises 454
- Equipment Operation in the Remote Radio Monitoring System 455

Detection of TCIL Sources by the Mobile Station

- Antenna System Selection ... 457
- Methods of RES Detection .. 458
- Equipment Structure of ARTIKUL-M6 Mobile Direction Finder 459
- Software Structure and Search Procedure Implementation 460
- Aggregation of the Initial Data Frames 461
12 Methods and Equipment for Protection Against Information Leakage Via CEE Channels 471
 General Information .. 471
 Special Investigation Types and Information Security Index ... 471
 Calculation of Information Security Index 473
 Estimation of the Testing Mode Parameters for a LCD Monitor ... 475
 Estimation of the Testing Mode Parameters for a CRT Monitor ... 475
 Methods of Detection of CEE Informative Components 476
 Probabilistic Features of Periodogram Samples 478
 TDM Algorithm .. 479
 Application of ARK-D1TI Measuring Complex 482
 Search of CEE Informative Components 484
 Measurement of CEE Informative Component Intensity 485
 Calculation of the Monitored Zone Radius by SMO-PRIZ
 Application .. 486
 Information Security Monitoring 488
 SMO-PRIZ Application Operation for Information Security
 Monitoring .. 490
 Purposes and Functions of SMO-THESIS Application 492
 Conclusion ... 496
 References ... 496

Conclusion .. 497

Subject Index ... 499
Radio Monitoring
Problems, Methods and Equipment
Rembovsky, A.M.; Ashikhmin, A.V.; Kozmin, V.A.; Smolskiy, S.M.
2009, XXII, 508 p. 315 illus., Hardcover