Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Let’s Count!</td>
<td>1</td>
</tr>
<tr>
<td>1.1 A Party</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Sets and the Like</td>
<td>4</td>
</tr>
<tr>
<td>1.3 The Number of Subsets</td>
<td>9</td>
</tr>
<tr>
<td>1.4 The Approximate Number of Subsets</td>
<td>14</td>
</tr>
<tr>
<td>1.5 Sequences</td>
<td>15</td>
</tr>
<tr>
<td>1.6 Permutations</td>
<td>17</td>
</tr>
<tr>
<td>1.7 The Number of Ordered Subsets</td>
<td>19</td>
</tr>
<tr>
<td>1.8 The Number of Subsets of a Given Size</td>
<td>20</td>
</tr>
<tr>
<td>2 Combinatorial Tools</td>
<td>25</td>
</tr>
<tr>
<td>2.1 Induction</td>
<td>25</td>
</tr>
<tr>
<td>2.2 Comparing and Estimating Numbers</td>
<td>30</td>
</tr>
<tr>
<td>2.3 Inclusion-Exclusion</td>
<td>32</td>
</tr>
<tr>
<td>2.4 Pigeonholes</td>
<td>34</td>
</tr>
<tr>
<td>2.5 The Twin Paradox and the Good Old Logarithm</td>
<td>37</td>
</tr>
<tr>
<td>3 Binomial Coefficients and Pascal’s Triangle</td>
<td>43</td>
</tr>
<tr>
<td>3.1 The Binomial Theorem</td>
<td>43</td>
</tr>
<tr>
<td>3.2 Distributing Presents</td>
<td>45</td>
</tr>
<tr>
<td>3.3 Anagrams</td>
<td>46</td>
</tr>
<tr>
<td>3.4 Distributing Money</td>
<td>48</td>
</tr>
</tbody>
</table>
3.5 Pascal’s Triangle ... 49
3.6 Identities in Pascal’s Triangle 50
3.7 A Bird’s-Eye View of Pascal’s Triangle 54
3.8 An Eagle’s-Eye View: Fine Details 57

4 Fibonacci Numbers .. 65
4.1 Fibonacci’s Exercise .. 65
4.2 Lots of Identities .. 68
4.3 A Formula for the Fibonacci Numbers 71

5 Combinatorial Probability 77
5.1 Events and Probabilities 77
5.2 Independent Repetition of an Experiment 79
5.3 The Law of Large Numbers 80
5.4 The Law of Small Numbers and the Law of Very Large Numbers ... 83

6 Integers, Divisors, and Primes 87
6.1 Divisibility of Integers 87
6.2 Primes and Their History 88
6.3 Factorization into Primes 90
6.4 On the Set of Primes 93
6.5 Fermat’s “Little” Theorem 97
6.6 The Euclidean Algorithm 99
6.7 Congruences .. 105
6.8 Strange Numbers .. 107
6.9 Number Theory and Combinatorics 114
6.10 How to Test Whether a Number is a Prime? 117

7 Graphs .. 125
7.1 Even and Odd Degrees 125
7.2 Paths, Cycles, and Connectivity 130
7.3 Eulerian Walks and Hamiltonian Cycles 135

8 Trees .. 141
8.1 How to Define Trees 141
8.2 How to Grow Trees 143
8.3 How to Count Trees? 146
8.4 How to Store Trees 148
8.5 The Number of Unlabeled Trees 153

9 Finding the Optimum ... 157
9.1 Finding the Best Tree 157
9.2 The Traveling Salesman Problem 161

10 Matchings in Graphs .. 165
10.1 A Dancing Problem 165
10.2 Another matching problem 167
10.3 The Main Theorem 169
10.4 How to Find a Perfect Matching 171

11 Combinatorics in Geometry 179
11.1 Intersections of Diagonals 179
11.2 Counting regions 181
11.3 Convex Polygons 184

12 Euler’s Formula 189
12.1 A Planet Under Attack 189
12.2 Planar Graphs 192
12.3 Euler’s Formula for Polyhedra 194

13 Coloring Maps and Graphs ... 197
13.1 Coloring Regions with Two Colors 197
13.2 Coloring Graphs with Two Colors 199
13.3 Coloring graphs with many colors 202
13.4 Map Coloring and the Four Color Theorem .. 204

14 Finite Geometries, Codes, Latin Squares, and Other Pretty Creatures .. 211
14.1 Small Exotic Worlds 211
14.2 Finite Affine and Projective Planes ... 217
14.3 Block Designs 220
14.4 Steiner Systems 224
14.5 Latin Squares 229
14.6 Codes 232

15 A Glimpse of Complexity and Cryptography ... 239
15.1 A Connecticut Class in King Arthur’s Court 239
15.2 Classical Cryptography 242
15.3 How to Save the Last Move in Chess ... 244
15.4 How to Verify a Password—Without Learning it ... 246
15.5 How to Find These Primes 246
15.6 Public Key Cryptography 247

16 Answers to Exercises 251