Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the Second Edition</td>
<td>vii</td>
</tr>
<tr>
<td>Preface to the First Edition</td>
<td>ix</td>
</tr>
<tr>
<td>Principal Notation</td>
<td>xvii</td>
</tr>
<tr>
<td>Concordance of Statements from the First Edition</td>
<td>xxi</td>
</tr>
<tr>
<td>1 Early History</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Life Tables and Renewal Theory</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Counting Problems</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Some More Recent Developments</td>
<td>13</td>
</tr>
<tr>
<td>2 Basic Properties of the Poisson Process</td>
<td>19</td>
</tr>
<tr>
<td>2.1 The Stationary Poisson Process</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Characterizations of the Stationary Poisson Process:</td>
<td></td>
</tr>
<tr>
<td>I. Complete Randomness</td>
<td>26</td>
</tr>
<tr>
<td>2.3 Characterizations of the Stationary Poisson Process:</td>
<td></td>
</tr>
<tr>
<td>II. The Form of the Distribution</td>
<td>31</td>
</tr>
<tr>
<td>2.4 The General Poisson Process</td>
<td>34</td>
</tr>
<tr>
<td>3 Simple Results for Stationary Point Processes on the Line</td>
<td>41</td>
</tr>
<tr>
<td>3.1 Specification of a Point Process on the Line</td>
<td>41</td>
</tr>
<tr>
<td>3.2 Stationarity: Definitions</td>
<td>44</td>
</tr>
<tr>
<td>3.3 Mean Density, Intensity, and Batch-Size Distribution</td>
<td>46</td>
</tr>
<tr>
<td>3.4 Palm–Khinchin Equations</td>
<td>53</td>
</tr>
<tr>
<td>3.5 Ergodicity and an Elementary Renewal Theorem Analogue</td>
<td>60</td>
</tr>
<tr>
<td>3.6 Subadditive and Superadditive Functions</td>
<td>64</td>
</tr>
</tbody>
</table>

xiii
4 Renewal Processes
4.1 Basic Properties 66
4.2 Stationarity and Recurrence Times 74
4.3 Operations and Characterizations 78
4.4 Renewal Theorems 83
4.5 Neighbours of the Renewal Process: Wold Processes 92
4.6 Stieltjes-Integral Calculus and Hazard Measures 106

5 Finite Point Processes 111
5.1 An Elementary Example: Independently and Identically Distributed Clusters 112
5.2 Factorial Moments, Cumulants, and Generating Function Relations for Discrete Distributions 114
5.3 The General Finite Point Process: Definitions and Distributions 123
5.4 Moment Measures and Product Densities 132
5.5 Generating Functionals and Their Expansions 144

6 Models Constructed via Conditioning: Cox, Cluster, and Marked Point Processes 157
6.1 Infinite Point Families and Random Measures 157
6.2 Cox (Doubly Stochastic Poisson) Processes 169
6.3 Cluster Processes 175
6.4 Marked Point Processes 194

7 Conditional Intensities and Likelihoods 211
7.1 Likelihoods and Janossy Densities 212
7.2 Conditional Intensities, Likelihoods, and Compensators 229
7.3 Conditional Intensities for Marked Point Processes 246
7.4 Random Time Change and a Goodness-of-Fit Test 257
7.5 Simulation and Prediction Algorithms 267
7.6 Information Gain and Probability Forecasts 275

8 Second-Order Properties of Stationary Point Processes 288
8.1 Second-Moment and Covariance Measures 289
8.2 The Bartlett Spectrum 303
8.3 Multivariate and Marked Point Processes 316
8.4 Spectral Representation 331
8.5 Linear Filters and Prediction 342
8.6 P.P.D. Measures 357
A1 A Review of Some Basic Concepts of Topology and Measure Theory 368
A1.1 Set Theory 368
A1.2 Topologies 369
A1.3 Finitely and Countably Additive Set Functions 372
A1.4 Measurable Functions and Integrals 374
A1.5 Product Spaces 377
A1.6 Dissecting Systems and Atomic Measures 382

A2 Measures on Metric Spaces 384
A2.1 Borel Sets and the Support of Measures 384
A2.2 Regular and Tight Measures 386
A2.3 Weak Convergence of Measures 390
A2.4 Compactness Criteria for Weak Convergence 394
A2.5 Metric Properties of the Space \mathcal{M}_X 398
A2.6 Boundedly Finite Measures and the Space $\mathcal{M}_X^\#$ 402
A2.7 Measures on Topological Groups 407
A2.8 Fourier Transforms 411

A3 Conditional Expectations, Stopping Times, and Martingales 414
A3.1 Conditional Expectations 414
A3.2 Convergence Concepts 418
A3.3 Processes and Stopping Times 423
A3.4 Martingales 428

References with Index 432

Subject Index 452

Chapter Titles for Volume II
9 General Theory of Point Processes and Random Measures
10 Special Classes of Processes
11 Convergence Concepts and Limit Theorems
12 Ergodic Theory and Stationary Processes
13 Palm Theory
14 Evolutionary Processes and Predictability
15 Spatial Point Processes
An Introduction to the Theory of Point Processes
Volume I: Elementary Theory and Methods
Daley, D.J.; Vere-Jones, D.
2003, XXI, 471 p., Hardcover
ISBN: 978-0-387-95541-4