I Review of Probability and Distribution Theory

1 Probability and Random Variables
1.1 Introduction
1.2 Univariate Discrete Distributions
 1.2.1 The Bernoulli and Binomial Distributions
 1.2.2 The Poisson Distribution
 1.2.3 Binomial Distribution: Normal Approximation
1.3 Univariate Continuous Distributions
 1.3.1 The Uniform, Beta, Gamma, Normal, and Student-t Distributions
1.4 Multivariate Probability Distributions
 1.4.1 The Multinomial Distribution
 1.4.2 The Dirichlet Distribution
 1.4.3 The d-Dimensional Uniform Distribution
 1.4.4 The Multivariate Normal Distribution
 1.4.5 The Chi-square Distribution
 1.4.6 The Wishart and Inverse Wishart Distributions
 1.4.7 The Multivariate-t Distribution
1.5 Distributions with Constrained Sample Space
1.6 Iterated Expectations
2 Functions of Random Variables 77
 2.1 Introduction .. 77
 2.2 Functions of a Single Random Variable 78
 2.2.1 Discrete Random Variables 78
 2.2.2 Continuous Random Variables 79
 2.2.3 Approximating the Mean and Variance 89
 2.2.4 Delta Method 93
 2.3 Functions of Several Random Variables 95
 2.3.1 Linear Transformations 111
 2.3.2 Approximating the Mean and Covariance Matrix . 114

II Methods of Inference 117

3 An Introduction to Likelihood Inference 119
 3.1 Introduction .. 119
 3.2 The Likelihood Function 120
 3.3 The Maximum Likelihood Estimator 122
 3.4 Likelihood Inference in a Gaussian Model 125
 3.5 Fisher’s Information Measure 128
 3.5.1 Single Parameter Case 128
 3.5.2 Alternative Representation of Information 131
 3.5.3 Mean and Variance of the Score Function 134
 3.5.4 Multiparameter Case 135
 3.5.5 Cramér–Rao Lower Bound 138
 3.6 Sufficiency .. 142
 3.7 Asymptotic Properties: Single Parameter Models 143
 3.7.1 Probability of the Data Given the Parameter 144
 3.7.2 Consistency 146
 3.7.3 Asymptotic Normality and Efficiency 147
 3.8 Asymptotic Properties: Multiparameter Models 152
 3.9 Functional Invariance 153
 3.9.1 Illustration of Functional Invariance 153
 3.9.2 Invariance in a Single Parameter Model 157
 3.9.3 Invariance in a Multiparameter Model 159

4 Further Topics in Likelihood Inference 161
 4.1 Introduction .. 161
 4.2 Computation of Maximum Likelihood Estimates 162
 4.3 Evaluation of Hypotheses 166
 4.3.1 Likelihood Ratio Tests 166
 4.3.2 Confidence Regions 177
 4.3.3 Wald’s Test 179
 4.3.4 Score Test 179
 4.4 Nuisance Parameters 181
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.5</td>
<td>Information about a Parameter</td>
<td>346</td>
<td></td>
</tr>
<tr>
<td>7.4.6</td>
<td>Fisher’s Information Revisited</td>
<td>351</td>
<td></td>
</tr>
<tr>
<td>7.4.7</td>
<td>Prior and Posterior Discrepancy</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>Priors Conveying Little Information</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>7.5.1</td>
<td>The Uniform Prior</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>7.5.2</td>
<td>Other Vague Priors</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>7.5.3</td>
<td>Maximum Entropy Prior Distributions</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>7.5.4</td>
<td>Reference Prior Distributions</td>
<td>379</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Bayesian Assessment of Hypotheses and Models</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Bayes Factors</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>8.2.1</td>
<td>Definition</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>8.2.2</td>
<td>Interpretation</td>
<td>402</td>
<td></td>
</tr>
<tr>
<td>8.2.3</td>
<td>The Bayes Factor and Hypothesis Testing</td>
<td>403</td>
<td></td>
</tr>
<tr>
<td>8.2.4</td>
<td>Influence of the Prior Distribution</td>
<td>412</td>
<td></td>
</tr>
<tr>
<td>8.2.5</td>
<td>Nested Models</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>8.2.6</td>
<td>Approximations to the Bayes Factor</td>
<td>418</td>
<td></td>
</tr>
<tr>
<td>8.2.7</td>
<td>Partial and Intrinsic Bayes Factors</td>
<td>422</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Estimating the Marginal Likelihood</td>
<td>424</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>Goodness of Fit and Model Complexity</td>
<td>429</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Goodness of Fit and Predictive Ability of a Model</td>
<td>433</td>
<td></td>
</tr>
<tr>
<td>8.5.1</td>
<td>Analysis of Residuals</td>
<td>434</td>
<td></td>
</tr>
<tr>
<td>8.5.2</td>
<td>Predictive Ability and Predictive Cross-Validation</td>
<td>436</td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>Bayesian Model Averaging</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>8.6.1</td>
<td>General</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>8.6.2</td>
<td>Definitions</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>8.6.3</td>
<td>Predictive Ability of BMA</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Approximate Inference Via the EM Algorithm</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Complete and Incomplete Data</td>
<td>444</td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>The EM Algorithm</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>9.3.1</td>
<td>Form of the Algorithm</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>9.3.2</td>
<td>Derivation</td>
<td>445</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>Monotonic Increase of $\ln p(\theta</td>
<td>y)$</td>
<td>447</td>
</tr>
<tr>
<td>9.5</td>
<td>The Missing Information Principle</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>9.5.1</td>
<td>Complete, Observed and Missing Information</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>9.5.2</td>
<td>Rate of Convergence of the EM Algorithm</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>9.6</td>
<td>EM Theory for Exponential Families</td>
<td>451</td>
<td></td>
</tr>
<tr>
<td>9.7</td>
<td>Standard Errors and Posterior Standard Deviations</td>
<td>452</td>
<td></td>
</tr>
<tr>
<td>9.7.1</td>
<td>The Method of Louis</td>
<td>453</td>
<td></td>
</tr>
<tr>
<td>9.7.2</td>
<td>Supplemented EM Algorithm (SEM)</td>
<td>454</td>
<td></td>
</tr>
<tr>
<td>9.7.3</td>
<td>The Method of Oakes</td>
<td>457</td>
<td></td>
</tr>
<tr>
<td>9.8</td>
<td>Examples</td>
<td>458</td>
<td></td>
</tr>
</tbody>
</table>
Contents

III Markov Chain Monte Carlo Methods 475

10 An Overview of Discrete Markov Chains 477
10.1 Introduction 477
10.2 Definitions 478
10.3 State of the System after n-Steps 479
10.4 Long-Term Behavior of the Markov Chain 481
10.5 Stationary Distribution 481
10.6 Aperiodicity and Irreducibility 483
10.7 Reversible Markov Chains 487
10.8 Limiting Behavior 492

11 Markov Chain Monte Carlo 497
11.1 Introduction 497
11.2 Preliminaries
11.2.1 Notation 498
11.2.2 Transition Kernels 499
11.2.3 Varying Dimensionality 499
11.3 An Overview of Markov Chain Monte Carlo 500
11.4 The Metropolis–Hastings Algorithm
11.4.1 An Informal Derivation 502
11.4.2 A More Formal Derivation 504
11.5 The Gibbs Sampler
11.5.1 Fully Conditional Posterior Distributions 510
11.5.2 The Gibbs Sampling Algorithm 510
11.6 Langevin–Hastings Algorithm 517
11.7 Reversible Jump MCMC
11.7.1 The Invariant Distribution 518
11.7.2 Generating the Proposal 519
11.7.3 Specifying the Reversibility Condition 520
11.7.4 Derivation of the Acceptance Probability 522
11.7.5 Deterministic Proposals 523
11.7.6 Generating Proposals via the Identity Mapping 525
11.8 Data Augmentation 532

12 Implementation and Analysis of MCMC Samples 539
12.1 Introduction 539
12.2 A Single Long Chain or Several Short Chains? 540
12.3 Convergence Issues
12.3.1 Effect of Posterior Correlation on Convergence 541
12.3.2 Monitoring Convergence 547
12.4 Inferences from the MCMC Output
12.4.1 Estimators of Posterior Quantities 550
12.4.2 Monte Carlo Variance 553
12.5 Sensitivity Analysis 556
IV Applications in Quantitative Genetics 561

13 Gaussian and Thick-Tailed Linear Models 563
 13.1 Introduction 563
 13.2 The Univariate Linear Additive Genetic Model 564
 13.2.1 A Gibbs Sampling Algorithm 566
 13.3 Additive Genetic Model with Maternal Effects 570
 13.3.1 Fully Conditional Posterior Distributions 575
 13.4 The Multivariate Linear Additive Genetic Model 576
 13.4.1 Fully Conditional Posterior Distributions 580
 13.5 A Blocked Gibbs Sampler for Gaussian Linear Models . 584
 13.6 Linear Models with Thick-Tailed Distributions 588
 13.6.1 Motivation 588
 13.6.2 A Student-t Mixed Effects Model 595
 13.6.3 Model with Clustered Random Effects 600
 13.7 Parameterizations and the Gibbs Sampler 602

14 Threshold Models for Categorical Responses 605
 14.1 Introduction 605
 14.2 Analysis of a Single Polychotomous Trait 607
 14.2.1 Sampling Model 607
 14.2.2 Prior Distribution and Joint Posterior Density .. 608
 14.2.3 Fully Conditional Posterior Distributions 611
 14.2.4 The Gibbs Sampler 615
 14.3 Analysis of a Categorical and a Gaussian Trait 615
 14.3.1 Sampling Model 616
 14.3.2 Prior Distribution and Joint Posterior Density .. 617
 14.3.3 Fully Conditional Posterior Distributions 619
 14.3.4 The Gibbs Sampler 625
 14.3.5 Implementation with Binary Traits 626

15 Bayesian Analysis of Longitudinal Data 627
 15.1 Introduction 627
 15.2 Hierarchical or Multistage Models 628
 15.2.1 First Stage 629
 15.2.2 Second Stage 634
 15.2.3 Third Stage 639
 15.2.4 Joint Posterior Distribution 641
 15.3 Two-Step Approximate Bayesian Analysis 642
 15.3.1 Estimating Location Parameters 643
 15.3.2 Estimating Dispersion Parameters 650
 15.3.3 Special Case: Linear First Stage 652
 15.4 Computation via Markov Chain Monte Carlo 653
 15.4.1 Fully Conditional Posterior Distributions 655
 15.5 Analysis with Thick-Tailed Distributions 664
16 Segregation and Quantitative Trait Loci Analysis 671
16.1 Introduction 671
16.2 Segregation Analysis Models 672
 16.2.1 Notation and Model 672
 16.2.2 Fully Conditional Posterior Distributions 675
 16.2.3 Some Implementation Issues 677
16.3 QTL Models 679
 16.3.1 Models with a Single QTL 680
 16.3.2 Models with an Arbitrary Number of QTL 690

References 701
List of Citations 727
Subject Index 733
Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics
Sorensen, D.; Gianola, D.
2002, XVIII, 740 p., Hardcover
ISBN: 978-0-387-95440-0