Contents

Preface

1 Graphs

1.1 Graphs 1
1.2 Subgraphs 3
1.3 Automorphisms 4
1.4 Homomorphisms 6
1.5 Circulant Graphs 8
1.6 Johnson Graphs 9
1.7 Line Graphs 10
1.8 Planar Graphs 12

Exercises 16
Notes 17
References 18

2 Groups

2.1 Permutation Groups 19
2.2 Counting 20
2.3 Asymmetric Graphs 22
2.4 Orbits on Pairs 25
2.5 Primitivity 27
2.6 Primitivity and Connectivity 29

Exercises 30
Notes 32
References 32
3 Transitive Graphs

3.1 Vertex-Transitive Graphs .. 33
3.2 Edge-Transitive Graphs ... 35
3.3 Edge Connectivity .. 37
3.4 Vertex Connectivity .. 39
3.5 Matchings .. 43
3.6 Hamilton Paths and Cycles .. 45
3.7 Cayley Graphs .. 47
3.8 Directed Cayley Graphs with No Hamilton Cycles 49
3.9 Retractions .. 51
3.10 Transpositions .. 52
Exercises ... 54
Notes ... 56
References ... 57

4 Arc-Transitive Graphs

4.1 Arc-Transitive Graphs ... 59
4.2 Arc Graphs .. 61
4.3 Cubic Arc-Transitive Graphs .. 63
4.4 The Petersen Graph .. 64
4.5 Distance-Transitive Graphs ... 66
4.6 The Coxeter Graph ... 69
4.7 Tutte’s 8-Cage ... 71
Exercises ... 74
Notes ... 76
References ... 76

5 Generalized Polygons and Moore Graphs

5.1 Incidence Graphs .. 78
5.2 Projective Planes .. 79
5.3 A Family of Projective Planes .. 80
5.4 Generalized Quadrangles .. 81
5.5 A Family of Generalized Quadrangles 83
5.6 Generalized Polygons .. 84
5.7 Two Generalized Hexagons ... 88
5.8 Moore Graphs .. 90
5.9 The Hoffman–Singleton Graph 92
5.10 Designs ... 94
Exercises ... 97
Notes ... 100
References ... 100

6 Homomorphisms

6.1 The Basics ... 103
6.2 Cores ... 104
6.3 Products .. 106
6.4 The Map Graph 108
6.5 Counting Homomorphisms 109
6.6 Products and Colourings 110
6.7 Uniquely Colourable Graphs 113
6.8 Foldings and Covers 114
6.9 Cores with No Triangles 116
6.10 The Andrásfai Graphs 118
6.11 Colouring Andrásfai Graphs 119
6.12 A Characterization 121
6.13 Cores of Vertex-Transitive Graphs 123
6.14 Cores of Cubic Vertex-Transitive Graphs 125
Exercises .. 128
Notes .. 132
References ... 133

7 Kneser Graphs ... 135
7.1 Fractional Colourings and Cliques 135
7.2 Fractional Cliques 136
7.3 Fractional Chromatic Number 137
7.4 Homomorphisms and Fractional Colourings 138
7.5 Duality ... 141
7.6 Imperfect Graphs 142
7.7 Cyclic Interval Graphs 145
7.8 Erdős–Ko–Rado 146
7.9 Homomorphisms of Kneser Graphs 148
7.10 Induced Homomorphisms 149
7.11 The Chromatic Number of the Kneser Graph 150
7.12 Gale’s Theorem 152
7.13 Welzl’s Theorem 153
7.14 The Cartesian Product 154
7.15 Strong Products and Colourings 155
Exercises .. 156
Notes .. 159
References ... 160

8 Matrix Theory ... 163
8.1 The Adjacency Matrix 163
8.2 The Incidence Matrix 165
8.3 The Incidence Matrix of an Oriented Graph 167
8.4 Symmetric Matrices 169
8.5 Eigenvectors 171
8.6 Positive Semidefinite Matrices 173
8.7 Subharmonic Functions 175
8.8 The Perron–Frobenius Theorem 178
8.9 The Rank of a Symmetric Matrix 179
8.10 The Binary Rank of the Adjacency Matrix 181
xvi Contents

8.11 The Symplectic Graphs 183
8.12 Spectral Decomposition 185
8.13 Rational Functions 187
Exercises 188
Notes 192
References 192

9 Interlacing 193
 9.1 Interlacing 193
 9.2 Inside and Outside the Petersen Graph 195
 9.3 Equitable Partitions 195
 9.4 Eigenvalues of Kneser Graphs 199
 9.5 More Interlacing 202
 9.6 More Applications 203
 9.7 Bipartite Subgraphs 206
 9.8 Fullerenes 208
 9.9 Stability of Fullerenes 210
Exercises 213
Notes 215
References 216

10 Strongly Regular Graphs 217
 10.1 Parameters 218
 10.2 Eigenvalues 219
 10.3 Some Characterizations 221
 10.4 Latin Square Graphs 223
 10.5 Small Strongly Regular Graphs 226
 10.6 Local Eigenvalues 227
 10.7 The Krein Bounds 231
 10.8 Generalized Quadrangles 235
 10.9 Lines of Size Three 237
 10.10 Quasi-Symmetric Designs 239
 10.11 The Witt Design on 23 Points 241
 10.12 The Symplectic Graphs 242
Exercises 244
Notes 246
References 247

11 Two-Graphs 249
 11.1 Equiangular Lines 249
 11.2 The Absolute Bound 251
 11.3 Tightness 252
 11.4 The Relative Bound 253
 11.5 Switching 254
 11.6 Regular Two-Graphs 256
 11.7 Switching and Strongly Regular Graphs 258

11.8 The Two-Graph on 276 Vertices ... 260
Exercises .. 262
Notes ... 263
References .. 263

12 Line Graphs and Eigenvalues ... 265
12.1 Generalized Line Graphs .. 265
12.2 Star-Closed Sets of Lines .. 266
12.3 Reflections .. 267
12.4 Indecomposable Star-Closed Sets .. 268
12.5 A Generating Set ... 270
12.6 The Classification .. 271
12.7 Root Systems ... 272
12.8 Consequences .. 274
12.9 A Strongly Regular Graph .. 276
Exercises ... 277
Notes ... 278
References ... 278

13 The Laplacian of a Graph .. 279
13.1 The Laplacian Matrix .. 279
13.2 Trees .. 281
13.3 Representations .. 284
13.4 Energy and Eigenvalues .. 287
13.5 Connectivity ... 288
13.6 Interlacing ... 290
13.7 Conductance and Cutsets .. 292
13.8 How to Draw a Graph ... 293
13.9 The Generalized Laplacian ... 295
13.10 Multiplicities .. 298
13.11 Embeddings ... 300
Exercises ... 302
Notes ... 305
References ... 306

14 Cuts and Flows ... 307
14.1 The Cut Space ... 308
14.2 The Flow Space .. 310
14.3 Planar Graphs .. 312
14.4 Bases and Ear Decompositions .. 313
14.5 Lattices ... 315
14.6 Duality ... 316
14.7 Integer Cuts and Flows ... 317
14.8 Projections and Duals .. 319
14.9 Chip Firing ... 321
14.10 Two Bounds ... 323
Contents

14.11 Recurrent States ... 325
14.12 Critical States ... 326
14.13 The Critical Group 327
14.14 Voronoi Polyhedra ... 329
14.15 Bicycles .. 332
14.16 The Principal Tripartition 334
Exercises ... 336
Notes .. 338
References ... 338

15 The Rank Polynomial .. 341
15.1 Rank Functions .. 341
15.2 Matroids ... 343
15.3 Duality .. 344
15.4 Restriction and Contraction 346
15.5 Codes .. 347
15.6 The Deletion–Contraction Algorithm 349
15.7 Bicycles in Binary Codes 351
15.8 Two Graph Polynomials 353
15.9 Rank Polynomial .. 355
15.10 Evaluations of the Rank Polynomial 357
15.11 The Weight Enumerator of a Code 358
15.12 Colourings and Codes 359
15.13 Signed Matroids ... 361
15.14 Rotors .. 363
15.15 Submodular Functions 366
Exercises ... 369
Notes .. 371
References ... 372

16 Knots .. 373
16.1 Knots and Their Projections 374
16.2 Reidemeister Moves ... 376
16.3 Signed Plane Graphs ... 379
16.4 Reidemeister moves on graphs 381
16.5 Reidemeister Invariants 383
16.6 The Kauffman Bracket 385
16.7 The Jones Polynomial 386
16.8 Connectivity .. 388
Exercises ... 391
Notes .. 392
References ... 392

17 Knots and Eulerian Cycles 395
17.1 Eulerian Partitions and Tours 395
17.2 The Medial Graph .. 398
Contents

17.3 Link Components and Bicycles .. 400
17.4 Gauss Codes ... 403
17.5 Chords and Circles .. 405
17.6 Flipping Words ... 407
17.7 Characterizing Gauss Codes .. 408
17.8 Bent Tours and Spanning Trees .. 410
17.9 Bent Partitions and the Rank Polynomial 413
17.10 Maps ... 414
17.11 Orientable Maps ... 417
17.12 Seifert Circles .. 419
17.13 Seifert Circles and Rank ... 420
Exercises .. 423
Notes ... 424
References ... 425

Glossary of Symbols .. 427

Index .. 433
Algebraic Graph Theory
Godsil, C.; Royle, G.F.
2001, XIX, 443 p., Hardcover