Table of Contents

CONTENTS, VOLUME II

Preface to the Third Edition vii
Preface to the First Edition xi

1. Multi-Species Waves and Practical Applications 1
 1.1 Intuitive Expectations .. 1
 1.2 Waves of Pursuit and Evasion in Predator–Prey Systems 5
 1.3 Competition Model for the Spatial Spread of the Grey Squirrel in Britain ... 12
 1.4 Spread of Genetically Engineered Organisms 18
 1.5 Travelling Fronts in the Belousov–Zhabotinskii Reaction 35
 1.6 Waves in Excitable Media 41
 1.7 Travelling Wave Trains in Reaction Diffusion Systems with Oscillatory Kinetics 49
 1.8 Spiral Waves .. 54
 1.9 Spiral Wave Solutions of $\lambda-\omega$ Reaction Diffusion Systems ... 61
Exercises ... 67

2. Spatial Pattern Formation with Reaction Diffusion Systems 71
 2.1 Role of Pattern in Biology 71
 2.2 Reaction Diffusion (Turing) Mechanisms 75
 2.3 General Conditions for Diffusion-Driven Instability:
 Linear Stability Analysis and Evolution of Spatial Pattern . 82
 2.4 Detailed Analysis of Pattern Initiation in a Reaction Diffusion
 Mechanism .. 90
 2.5 Dispersion Relation, Turing Space, Scale and Geometry Effects
 in Pattern Formation Models 103
 2.6 Mode Selection and the Dispersion Relation 113
 2.7 Pattern Generation with Single-Species Models: Spatial
 Heterogeneity with the Spruce Budworm Model 120
Contents, Volume II

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Mechanical Model for Mesenchymal Morphogenesis</td>
<td>319</td>
</tr>
<tr>
<td>6.3</td>
<td>Linear Analysis, Dispersion Relation and Pattern Formation Potential</td>
<td>330</td>
</tr>
<tr>
<td>6.4</td>
<td>Simple Mechanical Models Which Generate Spatial Patterns with Complex Dispersion Relations</td>
<td>334</td>
</tr>
<tr>
<td>6.5</td>
<td>Periodic Patterns of Feather Germs</td>
<td>345</td>
</tr>
<tr>
<td>6.6</td>
<td>Cartilage Condensations in Limb Morphogenesis and Morphogenetic Rules</td>
<td>350</td>
</tr>
<tr>
<td>6.7</td>
<td>Embryonic Fingerprint Formation</td>
<td>358</td>
</tr>
<tr>
<td>6.8</td>
<td>Mechanochemical Model for the Epidermis</td>
<td>367</td>
</tr>
<tr>
<td>6.9</td>
<td>Formation of Microvilli</td>
<td>374</td>
</tr>
<tr>
<td>6.10</td>
<td>Complex Pattern Formation and Tissue Interaction Models</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>394</td>
</tr>
<tr>
<td>7.</td>
<td>Evolution, Morphogenetic Laws, Developmental Constraints and Teratologies</td>
<td>396</td>
</tr>
<tr>
<td>7.1</td>
<td>Evolution and Morphogenesis</td>
<td>396</td>
</tr>
<tr>
<td>7.2</td>
<td>Evolution and Morphogenetic Rules in Cartilage Formation in the Vertebrate Limb</td>
<td>402</td>
</tr>
<tr>
<td>7.3</td>
<td>Teratologies (Monsters)</td>
<td>407</td>
</tr>
<tr>
<td>7.4</td>
<td>Developmental Constraints, Morphogenetic Rules and the Consequences for Evolution</td>
<td>411</td>
</tr>
<tr>
<td>8.</td>
<td>A Mechanical Theory of Vascular Network Formation</td>
<td>416</td>
</tr>
<tr>
<td>8.1</td>
<td>Biological Background and Motivation</td>
<td>416</td>
</tr>
<tr>
<td>8.2</td>
<td>Cell–Extracellular Matrix Interactions for Vasculogenesis</td>
<td>417</td>
</tr>
<tr>
<td>8.3</td>
<td>Parameter Values</td>
<td>425</td>
</tr>
<tr>
<td>8.4</td>
<td>Analysis of the Model Equations</td>
<td>427</td>
</tr>
<tr>
<td>8.5</td>
<td>Network Patterns: Numerical Simulations and Conclusions</td>
<td>433</td>
</tr>
<tr>
<td>9.</td>
<td>Epidermal Wound Healing</td>
<td>441</td>
</tr>
<tr>
<td>9.1</td>
<td>Brief History of Wound Healing</td>
<td>441</td>
</tr>
<tr>
<td>9.2</td>
<td>Biological Background: Epidermal Wounds</td>
<td>444</td>
</tr>
<tr>
<td>9.3</td>
<td>Model for Epidermal Wound Healing</td>
<td>447</td>
</tr>
<tr>
<td>9.4</td>
<td>Nondimensional Form, Linear Stability and Parameter Values</td>
<td>450</td>
</tr>
<tr>
<td>9.5</td>
<td>Numerical Solution for the Epidermal Wound Repair Model</td>
<td>451</td>
</tr>
<tr>
<td>9.6</td>
<td>Travelling Wave Solutions for the Epidermal Model</td>
<td>454</td>
</tr>
<tr>
<td>9.7</td>
<td>Clinical Implications of the Epidermal Wound Model</td>
<td>461</td>
</tr>
<tr>
<td>9.8</td>
<td>Mechanisms of Epidermal Repair in Embryos</td>
<td>468</td>
</tr>
<tr>
<td>9.9</td>
<td>Actin Alignment in Embryonic Wounds: A Mechanical Model</td>
<td>471</td>
</tr>
<tr>
<td>9.10</td>
<td>Mechanical Model with Stress Alignment of the Actin Filaments in Two Dimensions</td>
<td>482</td>
</tr>
<tr>
<td>10.</td>
<td>Dermal Wound Healing</td>
<td>491</td>
</tr>
<tr>
<td>10.1</td>
<td>Background and Motivation—General and Biological</td>
<td>491</td>
</tr>
</tbody>
</table>
10.2 Logic of Wound Healing and Initial Models .. 495
10.3 Brief Review of Subsequent Developments ... 500
10.4 Model for Fibroblast-Driven Wound Healing: Residual Strain and Tissue Remodelling .. 503
10.5 Solutions of the Model Equations and Comparison with Experiment 507
10.6 Wound Healing Model of Cook (1995) .. 511
10.7 Matrix Secretion and Degradation ... 515
10.8 Cell Movement in an Oriented Environment .. 518
10.9 Model System for Dermal Wound Healing with Tissue Structure 521
10.10 One-Dimensional Model for the Structure of Pathological Scars 526
10.11 Open Problems in Wound Healing ... 530
10.12 Concluding Remarks on Wound Healing .. 533

11. Growth and Control of Brain Tumours ... 536
11.1 Medical Background .. 538
11.2 Basic Mathematical Model of Glioma Growth and Invasion 542
11.3 Tumour Spread \textit{In Vitro}: Parameter Estimation 550
11.4 Tumour Invasion in the Rat Brain ... 559
11.5 Tumour Invasion in the Human Brain .. 563
11.6 Modelling Treatment Scenarios: General Comments 579
11.7 Modelling Tumour Resection in Homogeneous Tissue 580
11.8 Analytical Solution for Tumour Recurrence After Resection 584
11.9 Modelling Surgical Resection with Brain Tissue Heterogeneity 588
11.10 Modelling the Effect of Chemotherapy on Tumour Growth 594
11.11 Modelling Tumour Polyclonality and Cell Mutation 605

12. Neural Models of Pattern Formation ... 614
12.1 Spatial Patterning in Neural Firing with a Simple Activation–Inhibition Model .. 614
12.2 A Mechanism for Stripe Formation in the Visual Cortex 622
12.3 A Model for the Brain Mechanism Underlying Visual Hallucination Patterns .. 627
12.4 Neural Activity Model for Shell Patterns ... 638
12.5 Shamanism and Rock Art ... 655
Exercises .. 659

13. Geographic Spread and Control of Epidemics .. 661
13.1 Simple Model for the Spatial Spread of an Epidemic 661
13.2 Spread of the Black Death in Europe 1347–1350 664
13.3 Brief History of Rabies: Facts and Myths ... 669
13.4 The Spatial Spread of Rabies Among Foxes I: Background and Simple Model .. 673
13.5 The Spatial Spread of Rabies Among Foxes II: Three-Species (SIR) Model .. 681
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6 Control Strategy Based on Wave Propagation into a Nonepidemic Region: Estimate of Width of a Rabies Barrier</td>
<td>696</td>
</tr>
<tr>
<td>13.7 Analytic Approximation for the Width of the Rabies Control Break</td>
<td>700</td>
</tr>
<tr>
<td>13.8 Two-Dimensional Epizootic Fronts and Effects of Variable Fox Densities: Quantitative Predictions for a Rabies Outbreak in England</td>
<td>704</td>
</tr>
<tr>
<td>13.9 Effect of Fox Immunity on the Spatial Spread of Rabies Exercises</td>
<td>710</td>
</tr>
<tr>
<td>14.1 Introduction and Wolf Ecology</td>
<td>722</td>
</tr>
<tr>
<td>14.3 Multi-Wolf Pack Territorial Model</td>
<td>734</td>
</tr>
<tr>
<td>14.4 Wolf–Deer Predator–Prey Model</td>
<td>745</td>
</tr>
<tr>
<td>14.5 Concluding Remarks on Wolf Territoriality and Deer Survival</td>
<td>751</td>
</tr>
<tr>
<td>14.6 Coyote Home Range Patterns</td>
<td>753</td>
</tr>
<tr>
<td>14.7 Chippewa and Sioux Intertribal Conflict c1750–1850</td>
<td>754</td>
</tr>
</tbody>
</table>

Appendix

A. General Results for the Laplacian Operator in Bounded Domains 757

Bibliography 761

Index 791
Table of Contents (continued)

CONTENTS, VOLUME I

J.D. Murray: *Mathematical Biology, I: An Introduction*

Preface to the Third Edition vii

Preface to the First Edition xi

1. **Continuous Population Models for Single Species**
 1.1 Continuous Growth Models 1
 1.2 Insect Outbreak Model: Spruce Budworm 7
 1.3 Delay Models 13
 1.4 Linear Analysis of Delay Population Models: Periodic Solutions 17
 1.5 Delay Models in Physiology: Periodic Dynamic Diseases 21
 1.6 Harvesting a Single Natural Population 30
 1.7 Population Model with Age Distribution 36
 Exercises 40

2. **Discrete Population Models for a Single Species**
 2.1 Introduction: Simple Models 44
 2.2 Cobwebbing: A Graphical Procedure of Solution 49
 2.3 Discrete Logistic-Type Model: Chaos 53
 2.4 Stability, Periodic Solutions and Bifurcations 59
 2.5 Discrete Delay Models 62
 2.6 Fishery Management Model 67
 2.7 Ecological Implications and Caveats 69
 2.8 Tumour Cell Growth 72
 Exercises 75

3. **Models for Interacting Populations**
 3.1 Predator–Prey Models: Lotka–Volterra Systems 79
 3.2 Complexity and Stability 83
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Realistic Predator–Prey Models</td>
<td>86</td>
</tr>
<tr>
<td>3.4</td>
<td>Analysis of a Predator–Prey Model with Limit Cycle</td>
<td>88</td>
</tr>
<tr>
<td>3.5</td>
<td>Competition Models: Competitive Exclusion Principle</td>
<td>94</td>
</tr>
<tr>
<td>3.6</td>
<td>Mutualism or Symbiosis</td>
<td>99</td>
</tr>
<tr>
<td>3.7</td>
<td>General Models and Cautionary Remarks</td>
<td>101</td>
</tr>
<tr>
<td>3.8</td>
<td>Threshold Phenomena</td>
<td>105</td>
</tr>
<tr>
<td>3.9</td>
<td>Discrete Growth Models for Interacting Populations</td>
<td>109</td>
</tr>
<tr>
<td>3.10</td>
<td>Predator–Prey Models: Detailed Analysis</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>115</td>
</tr>
<tr>
<td>4.1</td>
<td>Biological Introduction and Historical Asides on the Crocodilia</td>
<td>119</td>
</tr>
<tr>
<td>4.2</td>
<td>Nesting Assumptions and Simple Population Model</td>
<td>124</td>
</tr>
<tr>
<td>4.3</td>
<td>Age-Structured Population Model for Crocodilia</td>
<td>130</td>
</tr>
<tr>
<td>4.4</td>
<td>Density-Dependent Age-Structured Model Equations</td>
<td>133</td>
</tr>
<tr>
<td>4.5</td>
<td>Stability of the Female Population in Wet Marsh Region I</td>
<td>135</td>
</tr>
<tr>
<td>4.6</td>
<td>Sex Ratio and Survivorship</td>
<td>137</td>
</tr>
<tr>
<td>4.7</td>
<td>Temperature-Dependent Sex Determination (TSD) Versus Genetic Sex Determination (GSD)</td>
<td>139</td>
</tr>
<tr>
<td>4.8</td>
<td>Related Aspects on Sex Determination</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>144</td>
</tr>
<tr>
<td>5.1</td>
<td>Psychological Background and Data: Gottman and Levenson Methodology</td>
<td>147</td>
</tr>
<tr>
<td>5.2</td>
<td>Marital Typology and Modelling Motivation</td>
<td>150</td>
</tr>
<tr>
<td>5.3</td>
<td>Modelling Strategy and the Model Equations</td>
<td>153</td>
</tr>
<tr>
<td>5.4</td>
<td>Steady States and Stability</td>
<td>156</td>
</tr>
<tr>
<td>5.5</td>
<td>Practical Results from the Model</td>
<td>164</td>
</tr>
<tr>
<td>5.6</td>
<td>Benefits, Implications and Marriage Repair Scenarios</td>
<td>170</td>
</tr>
<tr>
<td>6.1</td>
<td>Enzyme Kinetics: Basic Enzyme Reaction</td>
<td>175</td>
</tr>
<tr>
<td>6.2</td>
<td>Transient Time Estimates and Nondimensionalisation</td>
<td>178</td>
</tr>
<tr>
<td>6.3</td>
<td>Michaelis–Menten Quasi-Steady State Analysis</td>
<td>181</td>
</tr>
<tr>
<td>6.4</td>
<td>Suicide Substrate Kinetics</td>
<td>188</td>
</tr>
<tr>
<td>6.5</td>
<td>Cooperative Phenomena</td>
<td>197</td>
</tr>
<tr>
<td>6.6</td>
<td>Autocatalysis, Activation and Inhibition</td>
<td>201</td>
</tr>
<tr>
<td>6.7</td>
<td>Multiple Steady States, Mushrooms and Isolas</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>215</td>
</tr>
<tr>
<td>7.1</td>
<td>Motivation, Brief History and Background</td>
<td>218</td>
</tr>
<tr>
<td>7.2</td>
<td>Feedback Control Mechanisms</td>
<td>221</td>
</tr>
</tbody>
</table>
Contents, Volume I

7.3 Oscillators and Switches with Two or More Species:
General Qualitative Results .. 226
7.4 Simple Two-Species Oscillators: Parameter Domain
Determination for Oscillations 234
7.5 Hodgkin–Huxley Theory of Nerve Membranes:
FitzHugh–Nagumo Model ... 239
7.6 Modelling the Control of Testosterone Secretion and
Chemical Castration ... 244
Exercises .. 253

8. BZ Oscillating Reactions 257
8.1 Belousov Reaction and the Field–Körös–Noyes (FKN) Model 257
8.2 Linear Stability Analysis of the FKN Model and Existence
of Limit Cycle Solutions .. 261
8.3 Nonlocal Stability of the FKN Model 265
8.4 Relaxation Oscillators: Approximation for the
Belousov–Zhabotinskii Reaction 268
8.5 Analysis of a Relaxation Model for Limit Cycle Oscillations
in the Belousov–Zhabotinskii Reaction 271
Exercises .. 277

9. Perturbed and Coupled Oscillators and Black Holes 278
9.1 Phase Resetting in Oscillators 278
9.2 Phase Resetting Curves ... 282
9.3 Black Holes .. 286
9.4 Black Holes in Real Biological Oscillators 288
9.5 Coupled Oscillators: Motivation and Model System 293
9.6 Phase Locking of Oscillations: Synchronisation in Fireflies 295
9.7 Singular Perturbation Analysis: Preliminary Transformation ... 299
9.8 Singular Perturbation Analysis: Transformed System 302
9.9 Singular Perturbation Analysis: Two-Time Expansion 305
9.10 Analysis of the Phase Shift Equation and Application
to Coupled Belousov–Zhabotinskii Reactions 310
Exercises .. 313

10. Dynamics of Infectious Diseases 315
10.1 Historical Aside on Epidemics 315
10.2 Simple Epidemic Models and Practical Applications 319
10.3 Modelling Venera] Diseases 327
10.4 Multi-Group Model for Gonorrhea and Its Control 331
10.5 AIDS: Modelling the Transmission Dynamics of the Human
Immunodeficiency Virus (HIV) .. 333
10.6 HIV: Modelling Combination Drug Therapy 341
10.7 Delay Model for HIV Infection with Drug Therapy 350
10.8 Modelling the Population Dynamics of Acquired Immunity to
Parasite Infection ... 351
10.9 Age-Dependent Epidemic Model and Threshold Criterion

- Page 361

10.10 Simple Drug Use Epidemic Model and Threshold Analysis

- Page 365

10.11 Bovine Tuberculosis Infection in Badgers and Cattle

- Page 369

10.12 Modelling Control Strategies for Bovine Tuberculosis in Badgers and Cattle

- Page 379

Exercises

- Page 393

11. Reaction Diffusion, Chemotaxis, and Nonlocal Mechanisms

- Page 395

11.1 Simple Random Walk and Derivation of the Diffusion Equation

- Page 395

11.2 Reaction Diffusion Equations

- Page 399

11.3 Models for Animal Dispersal

- Page 402

11.4 Chemotaxis

- Page 405

11.5 Nonlocal Effects and Long Range Diffusion

- Page 408

11.6 Cell Potential and Energy Approach to Diffusion and Long Range Effects

- Page 413

Exercises

- Page 416

12. Oscillator-Generated Wave Phenomena

- Page 418

12.1 Belousov–Zhabotinskii Reaction Kinematic Waves

- Page 418

12.2 Central Pattern Generator: Experimental Facts in the Swimming of Fish

- Page 422

12.3 Mathematical Model for the Central Pattern Generator

- Page 424

12.4 Analysis of the Phase Coupled Model System

- Page 431

Exercises

- Page 436

13. Biological Waves: Single-Species Models

- Page 437

13.1 Background and the Travelling Waveform

- Page 437

13.2 Fisher–Kolmogoroff Equation and Propagating Wave Solutions

- Page 439

13.3 Asymptotic Solution and Stability of Wavefront Solutions of the Fisher–Kolmogoroff Equation

- Page 444

13.4 Density-Dependent Diffusion-Reaction Diffusion Models and Some Exact Solutions

- Page 449

13.5 Waves in Models with Multi-Steady State Kinetics: Spread and Control of an Insect Population

- Page 460

13.6 Calcium Waves on Amphibian Eggs: Activation Waves on *Medaka* Eggs

- Page 467

13.7 Invasion Wavespeeds with Dispersive Variability

- Page 471

13.8 Species Invasion and Range Expansion

- Page 478

Exercises

- Page 482

14. Use and Abuse of Fractals

- Page 484

14.1 Fractals: Basic Concepts and Biological Relevance

- Page 484

14.2 Examples of Fractals and Their Generation

- Page 487

14.3 Fractal Dimension: Concepts and Methods of Calculation

- Page 490

14.4 Fractals or Space-Filling?

- Page 496
Appendices

A. Phase Plane Analysis

B. Routh-Hurwitz Conditions, Jury Conditions, Descartes’ Rule of Signs, and Exact Solutions of a Cubic
 B.1 Polynomials and Conditions ... 507
 B.2 Descartes’ Rule of Signs .. 509
 B.3 Roots of a General Cubic Polynomial 510

Bibliography

Index
Mathematical Biology
I. An Introduction
Murray, J.D.
2002, XXIII, 551 p. 35 illus., Hardcover