Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>I Basic spectral methods</td>
<td>7</td>
</tr>
<tr>
<td>1 Fundamentals of spectral methods</td>
<td>9</td>
</tr>
<tr>
<td>1.1 Generalities on the method of weighted residuals</td>
<td>9</td>
</tr>
<tr>
<td>1.2 Approximation of a given function</td>
<td>11</td>
</tr>
<tr>
<td>1.2.1 Galerkin-type method</td>
<td>11</td>
</tr>
<tr>
<td>1.2.2 Collocation method</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Approximation of the solution of a differential equation</td>
<td>12</td>
</tr>
<tr>
<td>1.3.1 The traditional Galerkin method</td>
<td>13</td>
</tr>
<tr>
<td>1.3.2 The tau method</td>
<td>14</td>
</tr>
<tr>
<td>1.3.3 The collocation method</td>
<td>14</td>
</tr>
<tr>
<td>2 Fourier Method</td>
<td>17</td>
</tr>
<tr>
<td>2.1 Truncated Fourier series</td>
<td>17</td>
</tr>
<tr>
<td>2.1.1 Calculation of Fourier coefficients</td>
<td>18</td>
</tr>
<tr>
<td>2.1.2 Some results on convergence</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Discrete Fourier series</td>
<td>20</td>
</tr>
<tr>
<td>2.3 Relation between Galerkin and collocation coefficients</td>
<td>21</td>
</tr>
<tr>
<td>2.4 Odd and even collocation</td>
<td>22</td>
</tr>
</tbody>
</table>
2.5 Differentiation in the physical space 23
2.6 Differential equation with constant coefficients 25
 2.6.1 Galerkin method 25
 2.6.2 Collocation method 26
2.7 Differential equation with variable coefficients 28
 2.7.1 Galerkin method 28
 2.7.2 Collocation method 28
2.8 Nonlinear differential equation 31
2.9 Aliasing removal 33
3 Chebyshev method 39
 3.1 Generalities on Chebyshev polynomials 40
 3.2 Truncated Chebyshev series 43
 3.2.1 Calculation of Chebyshev coefficients 43
 3.2.2 Differentiation 44
 3.3 Discrete Chebyshev series and collocation 46
 3.3.1 Calculation of Chebyshev coefficients 46
 3.3.2 Relation between collocation and
 Galerkin coefficients 48
 3.3.3 Lagrange interpolation polynomial 49
 3.3.4 Differentiation in the physical space 50
 3.3.5 Round-off errors 51
 3.3.6 Relationship with finite-difference and
 similar approximations 54
 3.4 Differential equation with constant coefficients 55
 3.4.1 Tau method 56
 3.4.2 Collocation method 59
 3.4.3 Error equation 62
 3.5 Differential equation with nonconstant coefficients 65
 3.5.1 Linear equation with variable coefficients ... 65
 3.5.2 Nonlinear equation 65
 3.5.3 Aliasing 70
 3.6 Some results of convergence 70
 3.7 Multidimensional elliptic equation 77
 3.7.1 One-dimensional equation 78
 3.7.2 Two-dimensional equation 88
 3.7.3 Three-dimensional equation 93
 3.8 Iterative solution methods 98
4 Time-dependent equations 101
 4.1 Introduction 101
 4.2 The advection-diffusion equation 104
 4.2.1 The exact initial-boundary value problem 104
 4.2.2 Fourier approximation 105
 4.2.3 Chebyshev approximation 106
4.3 One-step method: the weighted two-level scheme
4.3.1 Fourier approximation
4.3.2 Chebyshev approximation

4.4 Two-step methods
4.4.1 Fourier approximation
4.4.2 Chebyshev approximation
4.4.3 Numerical illustration

4.5 High-order time-discretization methods
4.5.1 Multistep methods
4.5.2 One-step methods
4.5.3 Conclusion

II Navier-Stokes equations

5 Navier-Stokes equations for incompressible fluids
5.1 Velocity-pressure equations
5.2 Vorticity-streamfunction equations
5.2.1 Plane flow
5.2.2 Axisymmetric flow
5.3 Boussinesq approximation
5.4 Semi-infinite domain

6 Vorticity-Streamfunction Equations
6.1 Introduction
6.2 Fourier-Fourier method
6.3 Fourier-Chebyshev method
6.3.1 Flow in a plane channel
6.3.2 Time-dependent Stokes equations
6.3.3 Navier-Stokes equations
6.3.4 Case of nonzero flow rate
6.4 Chebyshev-Chebyshev method
6.4.1 Time-discretization
6.4.2 The influence matrix method
6.4.3 Other influence matrix methods
6.5 Examples of application
6.5.1 Rayleigh-Bénard convection
6.5.2 Axisymmetric flow in a rotating annulus

7 Velocity-Pressure Equations
7.1 Introduction
7.2 Fourier-Fourier-Fourier method
7.2.1 Time-discretization schemes
7.2.2 The nonlinear term
7.3 Fourier-Chebyshev method
7.3.1 Flow in a plane channel .. 213
7.3.2 Time-dependent Stokes equations 213
7.3.3 Navier-Stokes equations .. 251
7.4 Chebyshev-Chebyshev method 254
7.4.1 The influence matrix method 255
7.4.2 The projection method .. 266
7.4.3 Shear-stress-free boundary 277
7.4.4 Assessment of methods ... 278
7.4.5 The form of the nonlinear term 286
7.5 Example of application: three-dimensional flow in a rotating annulus ... 289

III Special topics ... 295

8 Stiff and singular problems .. 297
8.1 Introduction ... 298
8.2 Stiff problems: coordinate transformation approach 300
8.2.1 Requirements ... 300
8.2.2 Some typical mappings .. 301
8.2.3 Self-adaptive coordinate transformation 307
8.3 Stiff problem: domain decomposition approach 314
8.3.1 Fixed subdomains and nonadapted coordinate systems 314
8.3.2 Fixed subdomains and adapted coordinate transformations 316
8.3.3 Adapted subdomains and nonadapted coordinate systems 316
8.3.4 Adapted subdomains and adapted coordinate transformations 317
8.4 Singular problems ... 321
8.4.1 Singular solution of the Laplace equation 323
8.4.2 Navier-Stokes equations ... 328
8.5 Filtering technique .. 335

9 Domain Decomposition Method ... 339
9.1 Introduction ... 339
9.2 Differential equation ... 341
9.2.1 Patching method: two-domain solution 341
9.2.2 Patching method: multidomain solution 346
9.2.3 Spectral-element method ... 348
9.2.4 Numerical illustration ... 352
9.3 Two-dimensional Helmholtz equation 354
9.3.1 Patching method ... 355
9.3.2 Influence matrix method .. 357
Contents

9.3.3 Schur complement problem 360
9.3.4 Identity between influence matrix and Schur complement 361

9.4 Time-dependent equation 362
 9.4.1 Stability of the Chebyshev approximation 362
 9.4.2 Stability of time-discretization schemes 363

9.5 Navier-Stokes equations in vorticity-streamfunction variables 365
 9.5.1 Fourier-Chebyshev method 365
 9.5.2 Chebyshev-Chebyshev method 368
 9.5.3 Examples of application 371

9.6 Navier-Stokes equation in velocity-pressure variables 375
 9.6.1 Stokes problem: Fourier-Chebyshev method 376
 9.6.2 Stokes problem: Chebyshev-Chebyshev method . . . 378
 9.6.3 Example of application 385

A Formulas on Chebyshev polynomials 389
 A.1 Definition and general properties 389
 A.2 Differentiation ... 390
 A.3 Collocation points ... 391
 A.4 Truncated series expansion 392
 A.5 Lagrange interpolation polynomial 393
 A.6 Derivatives at Gauss-Lobatto points 393
 A.7 Integration .. 394
 A.8 Numerical integration based on Gauss-Lobatto points ... 394

B Solution of a quasi-tridiagonal system 397

C Theorems on the zeros of a polynomial 399

References 401
Spectral Methods for Incompressible Viscous Flow
Peyret, R.
2002, XII, 434 p., Hardcover