Contents

1 Introduction .. 1
 1.1 Statement of the Work 1
 1.2 Motivation of the Work 3
 1.3 Objectives of the Research 8
 1.4 Literature Review ... 8
 1.5 Proposed Fault Diagnosis Scheme 14
 1.6 Contributions of the Monograph 16
 1.7 Outline of the Monograph 18

2 Fault Detection and Diagnosis 21
 2.1 Problem Formulation .. 21
 2.2 Desired Attributes of a Fault Diagnosis System 26
 2.3 A Review of Analytical Redundancy-Based FDI Approaches 28
 2.3.1 Model-Based Approaches to FDI 28
 2.3.2 Computational Intelligence-Based Approaches to FDI 38
 2.4 Methodology Developed in This Monograph: Hybrid Approach to FDI .. 44
 2.5 Robustness of FDI to Uncertainties 46
 2.6 Conclusions .. 48

3 Proposed FDII for Nonlinear Systems with Full-State Measurement .. 51
 3.1 Fault Modeling and Health Indicator Parameters 52
 3.2 FDII using Parameter Estimation 56
 3.2.1 Conventional Linear and Nonlinear Parameter Estimation... 58
 3.2.2 Neural Network-Based Parameter Estimation 60
 3.3 FDII using Series-Parallel Architecture of Neural Parameter Estimators .. 61
 3.3.1 Weight Update Laws of the Series-Parallel Scheme 63
 3.3.2 FDI Decision Logic of the Series-Parallel Scheme 65
 3.4 Robust FDII Using Parallel Architecture of NPEs 66
 3.4.1 Weight Update Laws of the Robust Parallel Scheme 68
3.4.2 Fault Isolation Policy of the Parallel Scheme 68
3.5 Conclusions 69

4 Proposed FDII for Nonlinear Systems with Partial State Measurement 71
4.1 FDII Using the Series-Parallel Scheme Under Partial-State Measurements 72
4.2 FDII Using the Parallel Scheme Under Partial-State Measurements 74
4.3 Fault-Tolerant State Estimation 75
4.4 State Estimation of Nonlinear Dynamical Systems 77
 4.4.1 Probabilistically Inspired Approaches to Nonlinear Filtering 78
 4.4.2 Statistically Inspired Approaches to Nonlinear Filtering 80
4.5 Model-Based State Estimation 81
4.6 Learning and Computational Intelligence-Based State Estimation 82
 4.6.1 Probabilistically Inspired Approaches to Neural Network-Based Filtering 83
 4.6.2 Statistically Inspired Approaches to Neural Network-Based Filtering 85
4.7 Kalman Filter Structure-Preserving Neural State Estimator (NSE) 88
 4.7.1 Update Laws for the NSE: Recursive On-Line Backpropagation 90
4.8 Conclusions 96

5 Application to a Satellite’s Attitude Control Subsystem 99
5.1 Spacecraft Subsystems 100
5.2 Satellite Attitude Control Subsystem (ACS) 102
 5.2.1 Fault Diagnosis in Satellite ACS 102
 5.2.2 Satellite Attitude Dynamics 103
 5.2.3 Mathematical Modeling of External Attitude Disturbances 114
5.3 Attitude Control 117
 5.3.1 Three-Axis Active Attitude Control Design 117
5.4 Simulation Results of 3-Axis Stabilized ACS 118
 5.4.1 Three-Axis Attitude Stabilization 118
 5.4.2 Characterization of Possible Fault Scenarios in Reaction Wheels 130
5.5 Simulation Results for FDII with Full-State Measurements 130
 5.5.1 Simulation Results for FDII Using the Series-Parallel Scheme 134
 5.5.2 Robustness Analysis of the Series-Parallel FDII Scheme with respect to Measurement Noise 149
 5.5.3 Simulation Results for FDII Using the Parallel Scheme 164
 5.5.4 Robustness Analysis of the Parallel FDII Scheme with respect to Measurement Noise 177
Fault Diagnosis of Nonlinear Systems Using a Hybrid Approach
Sobhani-Tehrani, E.; Khorasani, K.
2009, XX, 268 p. 155 illus., Softcover
ISBN: 978-0-387-92906-4