Preface

This book originated from a set of lecture notes for a one-quarter graduate-level course taught at the University of Washington. The purpose of the course is to familiarize the students with the basic concepts of Bayesian theory and to quickly get them performing their own data analyses using Bayesian computational tools. The audience for this course includes non-statistics graduate students who did well in their department’s graduate-level introductory statistics courses and who also have an interest in statistics. Additionally, first- and second-year statistics graduate students have found this course to be a useful introduction to statistical modeling. Like the course, this book is intended to be a self-contained and compact introduction to the main concepts of Bayesian theory and practice. By the end of the text, readers should have the ability to understand and implement the basic tools of Bayesian statistical methods for their own data analysis purposes. The text is not intended as a comprehensive handbook for advanced statistical researchers, although it is hoped that this latter category of readers could use this book as a quick introduction to Bayesian methods and as a preparation for more comprehensive and detailed studies.

Computing

Monte Carlo summaries of posterior distributions play an important role in the way data analyses are presented in this text. My experience has been that once a student understands the basic idea of posterior sampling, their data analyses quickly become more creative and meaningful, using relevant posterior predictive distributions and interesting functions of parameters. The open-source R statistical computing environment provides sufficient functionality to make Monte Carlo estimation very easy for a large number of statistical models, and example R-code is provided throughout the text. Much of the example code can be run “as is” in R, and essentially all of it can be run after downloading the relevant datasets from the companion website for this book.
Acknowledgments

The presentation of material in this book, and my teaching style in general, have been heavily influenced by the diverse set of students taking CSSS-STAT 564 at the University of Washington. My thanks to them for improving my teaching. I also thank Chris Hoffman, Vladimir Minin, Xiaoyue Niu and Marc Suchard for their extensive comments, suggestions and corrections for this book, and to Adrian Raftery for bibliographic suggestions. Finally, I thank my wife Jen for her patience and support.

Seattle, WA

Peter Hoff
March 2009
A First Course in Bayesian Statistical Methods
Hoff, P.D.
2009, IX, 271 p., Hardcover