Contents

1 Introduction .. 1
 1.1 Hypoxia and the Northern Gulf of Mexico – A Brief Overview ... 1
 1.2 Science and Management Goals for Reducing Hypoxia 3
 1.3 Hypoxia Study Group .. 4
 1.4 The Study Group’s Approach 7

2 Characterization of Hypoxia 9
 2.1 Historical Patterns and Evidence for Hypoxia on the Shelf 9
 2.2 The Physical Context .. 12
 2.2.1 Oxygen Budget: General Considerations 12
 2.2.2 Vertical Mixing as a Function of Stratification and Vertical Shear ... 13
 2.2.3 Changes in Mississippi River Hydrology and Their Effects on Vertical Mixing ... 15
 2.2.4 Zones of Hypoxia Controls 18
 2.2.5 Shelf Circulation: Local Versus Regional 20
 2.3 Role of N and P in Controlling Primary Production 23
 2.3.1 Nitrogen and Phosphorus Fluxes to the NGOM Background ... 23
 2.3.2 N and P Limitation in Different Shelf Zones and Linkages Between High Primary Production Inshore and the Hypoxic Regions Farther Offshore ... 24
 2.4 Other Limiting Factors and the Role of Si 29
 2.5 Sources of Organic Matter to the Hypoxic Zone 31
 2.5.1 Sources of Organic Matter to NGOM: Post 2000 Integrated Assessment 33
 2.5.2 Advances in Organic Matter Understanding: Characterization and Processes 34
 2.5.3 Synthesis Efforts Regarding Organic Matter Sources 37
 2.6 Denitrification, P Burial, and Nutrient Recycling 38
 2.7 Possible Regime Shift in the Gulf of Mexico 41
 2.8 Single Versus Dual Nutrient Removal Strategies 44
 2.9 Current State of Forecasting 46
3 Nutrient Fate, Transport, and Sources

3.1 Temporal Characteristics of Streamflow and Nutrient Flux
 3.1.1 MARB Annual and Seasonal Fluxes
 3.1.2 Subbasin Annual and Seasonal Flux

3.2 Mass Balance of Nutrients
 3.2.1 Cropping Patterns
 3.2.2 Nonpoint Sources
 3.2.3 Point Sources

3.3 Nutrient Transport Processes
 3.3.1 Aquatic Processes
 3.3.2 Freshwater Wetlands
 3.3.3 Nutrient Sources and Sinks in Coastal Wetlands

3.4 Ability to Route and Predict Nutrient Delivery to the Gulf
 3.4.1 SPARROW Model
 3.4.2 SWAT Model
 3.4.3 IBIS/THMB Model
 3.4.4 Discussion and Comparison of Models
 3.4.5 Targeting
 3.4.6 Model Uncertainty

4 Scientific Basis for Goals and Management Options

4.1 Adaptive Management
4.2 Setting Targets for Nitrogen and Phosphorus Reduction
4.3 Protecting Water Quality and Social Welfare in the Basin
 4.3.1 Assessment and Review of the Cost Estimates from the CENR Integrated Assessment
 4.3.2 Other Large-Scale Integrated Economic and Biophysical Models for Agricultural Nonpoint Sources
 4.3.3 Research Assessing the Basin-Wide Co-benefits
 4.3.4 Principles of Landscape Design
4.4 Cost-Effective Approaches for Nonpoint Source Control
 4.4.1 Voluntary Programs – Without Economic Incentives
 4.4.2 Existing Agricultural Conservation Programs
 4.4.3 Emissions and Water Quality Trading Programs
 4.4.4 Agricultural Subsidies and Conservation Compliance Provisions
 4.4.5 Taxes
 4.4.6 Eco-labeling and Consumer Driven Demand
4.5 Options for Managing Nutrients, Co-benefits, and Consequences
 4.5.1 Agricultural Drainage
 4.5.2 Freshwater Wetlands
 4.5.3 Conservation Buffers
 4.5.4 Cropping Systems
 4.5.5 Animal Production Systems
Hypoxia in the Northern Gulf of Mexico
2010, LI, 284 p. 57 illus., 27 illus. in color., Hardcover
ISBN: 978-0-387-89685-4