Contents

Preface to the Second Edition .. ix
Preface to the First Edition .. xi

1 Introduction .. 1
 1.1 Modeling by Stochastic Differential Equations 1

2 Framework .. 13
 2.1 White Noise ... 13
 2.1.1 The 1-Dimensional, \(d \)-Parameter Smoothed White
 Noise ... 13
 2.1.2 The (Smoothed) White Noise Vector 20
 2.2 The Wiener–Itô Chaos Expansion 21
 2.2.1 Chaos Expansion in Terms of Hermite Polynomials 21
 2.2.2 Chaos Expansion in Terms of Multiple Itô Integrals ... 29
 2.3 The Hida Stochastic Test Functions and Stochastic
 Distributions. The Kondratiev Spaces \((\mathcal{S})^m;N\), \((\mathcal{S})^{m;N}_{-\rho}\) 31
 2.3.1 The Hida Test Function Space \((\mathcal{S})\) and the Hida
 Distribution Space \((\mathcal{S})^*\) 40
 2.3.2 Singular White Noise 42
 2.4 The Wick Product .. 43
 2.4.1 Some Examples and Counterexamples 47
 2.5 Wick Multiplication and Hitsuda/Skorohod Integration 50
 2.6 The Hermite Transform 61
 2.7 The \((\mathcal{S})^N_{\rho,r}\) Spaces and the \(S\)-Transform 75
 2.8 The Topology of \((\mathcal{S})^{N}_{-1}\) 81
 2.9 The \(\mathcal{F}\)-Transform and the Wick Product on \(L^1(\mu)\) 88
 2.10 The Wick Product and Translation 92
 2.11 Positivity ... 98
3 Applications to Stochastic Ordinary Differential Equations

3.1 Linear Equations

3.1.1 Linear 1-Dimensional Equations

3.1.2 Some Remarks on Numerical Simulations

3.1.3 Some Linear Multidimensional Equations

3.2 A Model for Population Growth in a Crowded, Stochastic Environment

3.2.1 The General \((S)\) Solution

3.2.2 A Solution in \(L^1(\mu)\)

3.2.3 A Comparison of Model A and Model B

3.3 A General Existence and Uniqueness Theorem

3.4 The Stochastic Volterra Equation

3.5 Wick Products Versus Ordinary Products: a Comparison Experiment

3.5.1 Variance Properties

3.6 Solution and Wick Approximation of Quasilinear SDE

3.7 Using White Noise Analysis to Solve General Nonlinear SDEs

4 Stochastic Partial Differential Equations Driven by Brownian White Noise

4.1 General Remarks

4.2 The Stochastic Poisson Equation

4.2.1 The Functional Process Approach

4.3 The Stochastic Transport Equation

4.3.1 Pollution in a Turbulent Medium

4.3.2 The Heat Equation with a Stochastic Potential

4.4 The Stochastic Schrödinger Equation

4.4.1 \(L^1(\mu)\)-Properties of the Solution

4.5 The Viscous Burgers Equation with a Stochastic Source

4.6 The Stochastic Pressure Equation

4.6.1 The Smoothed Positive Noise Case

4.6.2 An Inductive Approximation Procedure

4.6.3 The 1-Dimensional Case

4.6.4 The Singular Positive Noise Case

4.7 The Heat Equation in a Stochastic, Anisotropic Medium

4.8 A Class of Quasilinear Parabolic SPDEs

4.9 SPDEs Driven by Poissonian Noise

5 Stochastic Partial Differential Equations Driven by Lévy Processes

5.1 Introduction

5.2 The White Noise Probability Space of a Lévy Process \((d = 1)\)

5.3 White Noise Theory for a Lévy Process \((d = 1)\)
Stochastic Partial Differential Equations
A Modeling, White Noise Functional Approach
Holden, H.; Øksendal, B.; Ubøe, J.; Zhang, T.
2010, XV, 305 p. 17 illus., Softcover
ISBN: 978-0-387-89487-4