Contents

Preface ... ix

List of Examples Analyzed ... xvii

Part I Full Factorial Designs

1 Introduction to Full Factorial Designs with Two-Level Factors 3
 1.1 Advantages of Full Factorial Designs .. 3
 1.2 Standard Regression Models for Factorial Designs with Two-Level Factors 9
 1.3 Least Squares Estimation of a Regression Model 12
 1.4 Presenting a Fitted Model Graphically 19
 1.5 Four Steps for Planning a Successful Experiment 23

2 Analysis of Full Factorial Experiments .. 27
 2.1 Analysis Strategy Overview ... 27
 2.2 Analysis of Numerical Responses with Replication 29
 2.3 The Inclusion of Centerpoint Replicates 31
 2.4 Analysis of Numerical Responses Without Replication 35
 2.5 Normal Plot of Effects and Other Analysis Tools 45
 2.6 Diagnostics for a Fitted Model ... 48
 2.7 Transformations of the Response ... 53
 2.8 Analysis of Counts, Variances, and Other Statistics 57
 2.9 Unequal Replication and Unequal Variance 67
 2.10 The Impact of Missing Treatment Combinations 70

3 Common Randomization Restrictions ... 75
 3.1 Sources of Variation and a Design’s Unit Structure 75
 3.2 Treatment*Unit Interactions .. 78
3.3 Blocking: Partitioning a Factorial into Smaller Experiments . . . 79
3.4 Analyzing Randomized Block Factorial Designs 86
3.5 Split-Unit Designs 97
3.6 Multiway Blocking....................................... 104

4 More Full Factorial Design Examples 115
4.1 Example 4.1: Replicated 2^3 With Subsampling Within Runs . . 115
4.2 Example 4.2: 2^9 Factorial for Peptide Research 122
4.3 Example 4.3: 2^5 with Centerpoint Runs for Ceramic Strength . 134

Part II Fractional Factorial Designs

5 Fractional Factorial Designs: The Basics 145
5.1 Initial Fractional Factorial Example 145
5.2 Introduction to Regular Fractional Factorial Designs 150
5.3 Basic Analysis for Regular Fractional Factorial Designs 161

6 Fractional Factorial Designs for Estimating Main Effects 173
6.1 Analysis of Regular Resolution III Fractional Factorial Designs 174
6.2 Some Theory Regarding Resolution III Designs 190
6.3 Nonregular Orthogonal Designs of Strength 2 194
6.4 Optimal Nonorthogonal Saturated Main Effect Designs 226
6.5 Supersaturated Designs 231
6.6 Conclusions ... 244

7 Designs for Estimating Main Effects and Some Two-Factor Interactions .. 245
7.1 Five Examples Analyzed 246
7.2 Regular Resolution IV Designs 267
7.3 Strength-3 Orthogonal Arrays 277
7.4 Nonorthogonal Resolution IV Designs 279
7.5 Summary Regarding Choice of a Design 282

8 Resolution V Fractional Factorial Designs 283
8.1 Regular Resolution V 2^{k-f} Fractional Factorial Designs 283
8.2 Strength-4 Orthogonal Arrays 285
8.3 Three-Quarter Fraction of Regular Resolution V Designs 288
8.4 Smaller Nonorthogonal Resolution V Designs 293
8.5 Recommendations Regarding Design Choice 298
8.6 Analysis of Resolution V Experiments 299
9 Augmenting Fractional Factorial Designs 317
 9.1 Follow-up Experimentation Choices 317
 9.2 Confirmation Runs 319
 9.3 Steepest Ascent Search 321
 9.4 Foldover After a Resolution III Fraction 328
 9.5 Foldover and Semifolding After a Resolution IV Fraction ... 332
 9.6 Optimal Design Augmentation 338
 9.7 Adding and Dropping Factors 342

10 Fractional Factorial Designs with Randomization
 Restrictions .. 343
 10.1 Randomized Block Designs for Fractional Factorials 343
 10.2 Split-Unit Designs for Fractional Factorials 350
 10.3 Analysis of Fractional Factorials with Randomization
 Restrictions ... 354
 10.4 Sequences of Fractional Factorial Designs 371

11 More Fractional Factorial Design Examples 375
 11.1 A Mirror-Image Foldover with Unexpected Results 375
 11.2 Steepest Ascent with Constraints 382
 11.3 A Group Screening Experiment 385
 11.4 Nonorthogonal Blocking for a Fractional Factorial 389

Part III Additional Topics

12 Response Surface Methods and Second-Order Designs 397
 12.1 The Response Surface Methodology Strategy 397
 12.2 Central Composite Designs 399
 12.3 Other Composite Designs 403
 12.4 Box–Behnken Designs 407
 12.5 Analysis/Interpretation of the Fitted Second-Order Model ... 409

13 Special Topics Regarding the Design 415
 13.1 Power and the Choice of Sample Size 415
 13.2 Choice of Factor Levels 420
 13.3 Tips for Studying Variation 422
 13.4 Accommodating Factors with More Levels 424
 13.5 Special Requirements for Run Order and Treatment
 Combinations ... 428

14 Special Topics Regarding the Analysis 437
 14.1 Minimal Replication and Lenth’s Method 437
 14.2 Alternatives to Lenth t-Tests for Unreplicated Designs ... 440
 14.3 Analyzing the Variation in Structured Samples 449
14.4 Generalized Least Squares Analysis When Variances Are Unequal .. 454
14.5 Mixed-Model Analysis 457
14.6 Highly Multivariate Response Data 461
14.7 Four Analysis Blunders to Avoid 466

Part IV Appendices and Tables

A Upper Percentiles of t Distributions, t_α 471
B Upper Percentiles of F Distributions, F_α 473
C Upper Percentiles for Lenth t Statistics, c_{α}^{IER} and c_{α}^{EER} 477
D Computing Upper Percentiles for Maximum Studentized Residual ... 481
E Orthogonal Blocking for Full 2^k Factorial Designs 483
F Column Labels of Generators for Regular Fractional Factorial Designs .. 485
G Tables of Minimum Aberration Regular Fractional Factorial Designs .. 487
H Minimum Aberration Blocking Schemes for Fractional Factorial Designs .. 497
I Alias Matrix Derivation ... 511
J Distinguishing Among Fractional Factorial Designs 513
References ... 517
Abbreviations and Symbols .. 539
Index ... 543
A Comprehensive Guide to Factorial Two-Level Experimentation
Mee, R.
2009, XXIII, 545 p., Hardcover