Contents

Part I Concepts of Brain Theory

1 Lettvin’s Challenge ... 3

2 Issues Concerning the Nature of Neuronal Response 5
 2.1 Impressions Gained from Histograms and Raster Displays 5
 2.2 Cortical Firing Should Be Nearly Periodic – So Why Isn’t It? 6
 2.3 Sensitivity of Neurons to Synchronized Volleys of Spikes 8
 2.4 Notes on Plastic Change at the Synaptic Level 9

3 “Events” in the Brain ... 11
 3.1 The Brain Viewed as a Logic Network Without a “System Clock” 11
 3.2 Looking for “Surprising Events” in the Neuronal Input Stream 12
 3.3 Poisson Surprise as a Diagnostic Tool 13
 3.4 Critique of Brain Models Relying on Average Spike Rates 14
 3.5 The LTP Is Probably the Marking of Synapse Sets for Later Use 14

4 Cell Assemblies ... 17
 4.1 Ignition ... 17
 4.2 Synchronized “One-Spike” Ignitions 18
 4.3 Ignitions and the Central Bins of Cross-Correlograms 19
 4.4 Ignitions and Single-Unit Recording 20
 4.5 Why Myelin Is Indispensable to Nervous Function? 20

5 Surprise, Statistical Inference, and Conceptual Notes 23
 5.1 Spike Coincidence Interpreted in Terms of Surprise 24
 5.2 Local Knowledge and Its Relation to Information 24
 5.3 The Fundamental Law of Brain Theory 25
5.4 Parsing the Network into Localities 25
5.5 Brain Modeling Viewed as “Reverse Engineering” 26

6 A New Term: Ignitions Which “Reach”
or “Don’t Reach” a Neuron .. 27
6.1 How Many Synapses Does It Take to Reach a Neuron? 28
6.2 Axons, Where They Arborize, Can Probably Contact Most Neurons .. 28
6.3 A Good Unit of Cortical Distance: The Width of a Column 30
6.4 Axonal Branching Near the Cell Body 31
6.5 Retinotopic Mapping .. 31
6.6 Axons Which Confine Their Branching to a Few Columns 32

7 Confirmation Loops, Powered by Self-Ignitions 35
7.1 The Principle of Overwhelming Odds 35
7.2 Prime Mover Networks at the “Sending End”
of Surprising Signals .. 35
7.3 Confirmation Loops and the Classical “Reverberations” 37

8 Communicating “Relatedness” Through Time-Linked Ignitions 39
8.1 Time-Linked Ignitions Viewed as Sentences 40
8.2 Joining Sentences on Shared Nouns 40

9 Relational Firing: Broadcasting a Shape Through Time-Linked Ignitions .. 43
9.1 Labeled Lines: The Messenger Is the Message 43
9.2 Direction-Coded Cells .. 44
9.3 Relational Firing: Two Cell Groups Broadcasting a Relation ... 46
9.4 Visual Sentences Conveying that Two Sides Meet in One Point ... 47
9.5 “Kernel Cells,” Used in Joining Co-ignitions on Shared Points ... 48
9.6 Visual Sentences Communicating a Triangular Shape 50
9.7 “Contour Cells” and “Direction-Coded Cells” 52
9.8 Broadcasting More Complex Shapes 54
9.9 The Role of Retinotopy and Connectivity 57
9.10 Confirmation Loops and the Epochs on High Poisson Surprise ... 58
9.11 3D Extension of Polygon Graphics 59
9.12 Distributed Knowledge .. 59

Part II Contour Strings and the Contour Wave

10 Enter the Contour String ... 63
10.1 The Issue of Enabling Communication Between Parts of an Image ... 63
10.2 Cells Which Link Up to Pass Waves When Co-stimulated 64
10.3 Ignition on the Contour Moves Like a Wave (Contour Wave) ... 64
10.4 Seeing Viewed as Short-Term Learning 65
10.5 Only the Simple Cell Is Suitable for Conducting
the Contour Waves .. 65
10.6 The Need for Drome-Selectivity in Simple Cells 65
10.7 The Problem of Converting “Facts” into “Events” 66
10.8 The Contour String as a “Prime Mover” 67
10.9 The Contour String as Representation of a Gestalt 68

11 Drift of the Retinal Image .. 71
11.1 Tracking the Nouns Used in Joining Sentences 71
11.2 The Word “Fixation” Is a Mismarker 72
11.3 A Period of Fixation Is a Period of Tracking 72

12 Theory of the Simple Cell .. 75
12.1 Simple Cells, When Detecting LGN Input, Must Link Up Fast 75
12.2 Warm-Up of Simple Cells by the Approaching Contour Wave ... 76
12.3 Cross-Potentiation: One Synapse Pool Changing the Effect of
Another ... 76
12.4 The Graphical Notation of Neuron Sets and Synapse Sets 77
12.5 The Preparation of Simple Cells for Their Role in Contour Waves 79

13 Theory of the Complex Cell .. 85
13.1 Tracking ... 85
13.2 Tracking Based on Overlap: Dynamically Marked Synapses 86
13.3 Dynamic Marking Shown in Drawings as Just Marking 88
13.4 The Trick of Simple Cells Feeding into Complex Cells 88
13.5 Simple and Complex Cell Responses Are All Contour
Wave Responses ... 90
13.6 How the Complex Cell Works .. 91

14 Corner Processing: Theory of the Hypercomplex Cell 93
14.1 Propagation of Contour Waves Toward and Away from Corners .. 93
14.2 Corner-Supporting Simple (CS Simple) Cells 94
14.3 Hypercomplex Cells ... 98
14.4 Comparing Hypercomplex and CS Simple Cells 99

Part III Nodes, Links, Bridgeheads

15 Nodes on Contour Strings ... 103
15.1 The Problem of Slow Propagation ... 103
15.2 The Stria of Gennari .. 103
15.3 Speed-Up by Means of Nodes Linked by Gennari Fibers 104
15.4 Nodes Viewed as Representing Points 105
15.5 A Note on the Fiber Requirement of Visual Integration 105
15.6 The Placement of Nodes on a Contour 106
15.7 A Link Between Nodes Has a *Bridgehead* on Each Node 107

16 Custom-Made Unstable Networks Made to Support Tracking 109
16.1 Self-Igniting Networks Which Continually Gain and Lose Cells 109
16.2 Active Linkage: Two Bridgeheads Repeatedly Co-igniting 110
16.3 Detecting When a Link Becomes Weak 111
16.4 The Linkage Between Tracking, Metric Relations, and Long-Term Storage 115
16.5 Tracking a Contour Whose Shape Changes 116
16.6 Restoring a Weakened Link .. 117

17 Why Is the Drifting Retinal Image Helpful in Perception? 121
17.1 The Growth of Nodes in the Course of Contour Drift 122
17.2 Kernel Cells in Multi-column Nodes 126

18 The Maintenance of Moving Nodes and Bridgeheads 129
18.1 Adding New Neurons to a Drifting Node 129
18.2 Spread of a Bridgehead Sideways, Along the Contour 133

Part IV Firing Games and the Integration of Contours

19 Making the First Links by Crawling Along a Contour String 141
19.1 Outline of the Continuity Detection and Contour Linkup 142
19.1.1 Nodes and Their Initial Ignitions 142
19.1.2 The Cells as Individuals Cannot See the Whole Picture 142
19.1.3 How a “Grand Design” Enables Cells to Convey More Than They Know 143
19.1.4 Localities Monitoring the Moving Wave Via Long Axons 143
19.1.5 The Smallest Cell Group Able to Trade Knowledge: The Node 144
19.1.6 Monitoring Single Contour Waves in Isolation: The “Tracer Wave” 145
19.1.7 Preventing Extra Waves from Being Traced: The “Second Enable” 146
19.1.8 Satisfying the Surprise Requirement of “Second Enable”: Warmup Runs 146
20 Using Existing Links to Make New Links on the Same Contour

19.1.9 Tracer Waves Continuous with an “Arrival Volley” from the Next Node .. 147
19.1.10 How Can the Base Node Recognize the Arrival Volleys? ... 147
19.1.11 Saving the Detected Continuity in the Form of Hardware ... 148
19.1.12 Node A Knows that the Reaching Is Bidirectional; So Does Node B .. 149
19.1.13 Linkup and Active Link Operation .. 149
19.2 Operating Modes of Neurons .. 150
19.3 Firing Games: Goal-Directed Organization Without a Leader ... 151
19.4 Directional Specificity of Contour Cells: R-cells and L-cells .. 152
19.5 A Note on the Drawings Describing Contour Linkup .. 152
19.6 Synaptic Interactions During Tracer Runs and Linkup ... 156
19.7 Continuity Detection from the Standpoint of the Base Cells ... 161
19.8 “Understudy Processing” of Cells Before They Join a Node .. 164
19.9 Phases of a Linkup, with Each Phase “hammered in” by Repetitions 165
19.10 Suppressing Tracer Waves Beyond the First Node They Encounter 171
19.11 Recognition of Crosstalk Between Two Contours .. 172

20.1 Outline of Using Two Links to Make a Third Link on the Same Contour .. 175
20.1.1 Relation “A on Same Contour as B” is Transitive; But There is a Catch 175
20.1.2 Linkup of Two Nodes Must Start from a Third, with Links to Both .. 176
20.1.3 Three-Node Ignitions .. 176
20.1.4 Making the Triple Ignitions Reach the Satellite Nodes .. 177
20.1.5 The Issue of Limiting the Search Volleys to a Range of Directions .. 177
20.1.6 How Do Nodes A and C Know that They Are Supposed to Link Up? 178
20.1.7 The Beginning of the Bridgeheads of an A–C Link .. 178
20.1.8 The Challenge of Making the Bridgeheads Ignitable .. 179
20.1.9 Gradual Growth of the New Bridgeheads .. 179
20.1.10 The Cessation of Omnidirectional Volleys .. 180
20.1.11 Setting Up Mutual Excitation Between Nodes A and C .. 181
20.1.12 The Next Step Is to Separate the A–B Link and B–C Link Again .. 181
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1.13 How Do the Bridgeheads in B Know to Undo Their Linkage?</td>
<td>181</td>
</tr>
<tr>
<td>20.1.14 Restoring the A–B Link and B–C Link</td>
<td>182</td>
</tr>
<tr>
<td>20.1.15 Why Not Just Start a Free-for-All of Echolocation?</td>
<td>183</td>
</tr>
<tr>
<td>20.2 Extending a Long Link to the Next Node on a Contour</td>
<td>183</td>
</tr>
<tr>
<td>20.2.1 Node-Level Description of the Linkup Step</td>
<td>184</td>
</tr>
<tr>
<td>20.2.2 Description of the Linkup Step in More Detail</td>
<td>187</td>
</tr>
<tr>
<td>21 Completing a Triangle of Links</td>
<td>199</td>
</tr>
<tr>
<td>21.1 Closing a Triangle</td>
<td>199</td>
</tr>
<tr>
<td>21.2 How to Spot “Open” Triangles: The Three-Element Problem</td>
<td>201</td>
</tr>
<tr>
<td>22 All-to-All Linkup on Smaller Shapes, Utilizing Chain Ignitions</td>
<td>207</td>
</tr>
<tr>
<td>22.1 Indiscriminate Linkup of All Nodes</td>
<td>207</td>
</tr>
<tr>
<td>Closing Remarks</td>
<td>211</td>
</tr>
<tr>
<td>References</td>
<td>213</td>
</tr>
<tr>
<td>Index</td>
<td>219</td>
</tr>
</tbody>
</table>
Circuits in the Brain
A Model of Shape Processing in the Primary Visual Cortex
Legény, C.
2009, XXVI, 226 p. 100 illus., Hardcover
ISBN: 978-0-387-88848-4