Chapter 2
Issues Concerning the Nature of Neuronal Response

2.1 Impressions Gained from Histograms and Raster Displays

A person whose intuition of neuronal reliability is shaped by post-stimulus time (PST) histograms (Gerstein and Kiang, 1960) and dot raster displays (see for example Schmidt et al, 1975) (myself included, in the early papers Legény, 1970, 1975) may well be tempted to assume that the single neuron is only reliable in broad statistical terms. To elicit reproducible behavior from a neuron of the visual cortex, for instance, one must sweep the receptive field 10–20 times, combine the sweeps into a PST histogram or a raster display, and examine the way the spikes are distributed. Two or three sweeps do not appear to be enough to get a clear idea of the neuron’s behavior, because, as seen in Fig. 2.1, the responses do not repeat spike-for-spike; some sweeps show more spikes, some fewer.

The displays suggest to us that a neuron responds, when it does, by emitting a number of spikes. Some typical responses are “brisk,” where a number of spikes,

![Raster Display and PST Histogram](image)

Fig. 2.1 Raster display and post-stimulus time histogram. Top: responses of a neuron to eight triggered sweeps of a stimulus (hypothetical neuron and stimulus); bottom: spike counts gathered from the same spike trains (10 ms bins)
say 5–10, are crowded into a short time interval, say 20–30 ms; others are more “sluggish” where fewer spikes appear and they are spread over a longer time interval. They do not encourage us to trust the neuron to emit spikes individually timed in ways that fit into the overall processing.

However, recent studies tell us that neuronal outputs are quite reliable, as long as the inputs are. The internal signal conduction within the neuron has been shown to be both reliable and fast (Mainen and Sejnowski, 1995; Ariav et al., 2003), and in particular much faster than had been believed on the basis of the classical resistive-capacitive picture of dendrites (Rall, 1962).

The reliability and speed of neurons seemingly contradicts their irregular mode of firing in behaving animals, and leads to a useful inference concerning the neuronal input stream, as will be seen next.

2.2 Cortical Firing Should Be Nearly Periodic – So Why Isn’t It?

When a steady current is injected into the interior of a neuron (Fig. 2.2), the neuron emits more or less periodic firing, whose spike rate increases with the current; it does not for instance fire irregularly at a current-dependent average rate. More recently it has been demonstrated (in vitro) that current injection into apical dendrites, and even thin (1.9 micron) basal dendrites, or comparably thin branches of the dendritic tuft in layer 2–3 pyramidal cells, causes similar and more or less regular firing (Larkum et al., 2001; Nevian et al., 2007; Larkum et al., 2007).

The counterintuitive aspect of the observation becomes clear when one notes that, at least in a crude approximation, every spike coming to an excitatory synapse injects a small amount of electric charge into the cell interior. Since typically thousands of spike trains arrive to a cortical neuron through its synapses, their steady rainfall is expected to simulate a DC current injected into the cell interior, and cause more or less steady firing like what is seen in Fig. 2.2, or at least steady firing at a slowly varying rate, as shown in Fig. 2.3(a). However, in fact, typical spike trains in the visual cortex look something like Fig. 2.3(b).

Fig. 2.2 Response of a cell to intracellular injection of DC current. Response (in vivo) of a Betz cell from the motor cortex, when a pulse of steady electrical current, lasting about 200 ms, is injected into its cell body (Anesthetized cat. Re-drawn from Creutzfeldt et al., 1964)
The contradiction was first raised in the form of a problem requiring a solution by Perkel and Bullock (1969) who used the mathematical results of Cox and Smith (1954); it was later brought to wider attention by Softky and Koch (1993), and has since then given rise to a fair amount of discussion in the literature. It may be remarked that some of this discussion incorrectly implies that current injection only causes regular spiking in brain slices (in vitro), whereas in fact it also does so in the intact brain (Creutzfeldt et al., 1964; Oshima, 1969; Ahmed et al., 1993).

The irregularity of firing in response to natural inputs has been attributed by some writers to brief pauses in firing caused by volleys of inhibition (Shadlen and Newsome, 1998), and by others to noise in the membrane and synapses (Destexhe et al., 2001). Both groups of authors see the irregular firing as resulting from noise-like random events of one sort or another.

The explanation in terms of random events has never been entirely satisfying. Ahmed et al. (1993), in an in vivo study, point out (and it is also observable in the data of Creutzfeldt et al., 1964) that at low levels of injected current the firing is often irregular, but at stronger currents it becomes more regular. The random noise explanation would predict that during the brief epochs of elevated spike rate (bursts) reported in waking animals (Legéndy and Salcman, 1985), when electric charge is expected to enter the cell interior at an increased rate, the irregularity-causing effects of noise would tend to be overwhelmed by the input current, and the spike discharge would become more uniform (Holt et al., 1996).

However, in behaving animals the spiking is just as irregular during the bursts as it is outside the bursts (Legéndy and Salcman, 1985). In must be added that Stevens and Zador (1998), in a careful statistical study, eliminate both noise and inhibition as reasons for the observed irregularity, and show that their effect is, at least in an in vitro preparation, insufficient for causing the observed behavior. While the role of inhibition in causing the irregular firing is likely to be important, the conclusion remains that the irregular firing of the neurons in behaving animals implies synchronized and correlated synaptic input.

The present model goes along with the latter conclusion and assumes that a significant number of spikes arriving to the neurons are sharply synchronized.

The idea of synchrony sharp enough to dictate the timing of output spikes suggests that the incoming spikes arrange a “rendezvous,” in some way, on the receptive surfaces of neurons, which is a seemingly outlandish idea and may account for some of the resistance to it in the literature.
As will be seen, the concept becomes much more plausible when viewed from a different perspective (Sect. 4.2), but before getting to that, let me make a brief remark on the effect of volleys of spikes on neurons, and then survey some of the literature on plasticity.

2.3 Sensitivity of Neurons to Synchronized Volleys of Spikes

The form of “rendezvous” which comes up most often in this book is one which sends a volley of nearly simultaneous spikes to neurons, along the lines shown in Fig. 2.4. Such volleys clearly stand out above the background noise, especially when...
repeated, and there is evidence that if they arrive repeatedly they can cause plastic change, marking the synapses on which they arrive.

In Fig. 2.4, repeated volleys arrive to a set of synapses (arrows at right), envisioned as being located sufficiently close together on a dendrite to cause the indicated excitatory postsynaptic potentials (EPSPs) at the synapses. The gradually increasing EPSP amplitude (exaggerated) is intended to imply a mechanism of short-term and long-term potentiation (STP and LTP). The threshold marked with broken line stands for the minimum level of membrane potential needed, in conjunction with presynaptic activity, for inducing synaptic potentiation.

The insets at the bottom of Fig. 2.4 introduce a graphical notation (see also Sect. 12.3), to be used in the functional diagrams of later chapters for sets of synapses on neurons which undergo LTP, or are “marked,” as will be said from now on. A set of synapses, initially unassigned and only known to be a subset of the synapses from a biologically distinct neuron pool (rectangular shading at left), becomes “marked” (semicircle at right) by repeatedly arriving volleys. The amorphously drawn blob shape in these drawings stands for the typical neuron from among a set of similar neurons, or alternatively for the neuron set itself, and the arrow for a set of fibers coming to the neuron and bringing the signals which do the marking.

2.4 Notes on Plastic Change at the Synaptic Level

The classic Hebbian scheme of synapse modification (Hebb, 1949) does not permit plastic change to occur as a result of time-concentrated presynaptic events alone; it requires the postsynaptic neuron also to fire, right after the presynaptic firing, and until recently all experimental findings agreed. It appeared that only through firing, and the resulting back-propagated action potential, could a neuron send all its participating synapses an intense enough and fast enough wave of depolarization to induce them to long-term change.

However, recently, Remy and Spruston (2007) showed that the postsynaptic firing is not strictly necessary, as long as the synaptic invasion is intense enough to give rise to dendritic spikes. It may be added that, in practice, when volleys are intense enough to cause dendritic spikes, they are also expected, after some repetitions, to cause action potentials, since the level of current injection required for the latter is not much greater (Nevian et al., 2007). (For the purposes of their demonstration,

Fig. 2.4 (continued) Marking a set of synapses participating in repeated volleys. Traces 1–20 stand for spike trains arriving to some of the synapses on a (hypothetical) neuron. At times #1, #2, #3, (arrows on top) the spike trains form “volleys”; seven of the spike trains (arrows at right) participate in all three of the volleys. The corresponding membrane potential (idealized) is shown below the traces. Bottom: synapse set notation symbolizing a whole synapse pool (A) on the neuron receiving input (left, shaded rectangle), and a “synapse set” marked out from among members of the same synapse pool as a result of the recurring volleys (right, semicircle)
Remy and Spruston, 2007, suppressed the action potentials and back-propagation by means of tetrodotoxin.)

According to the available evidence, induction of LTP requires presynaptic spikes in conjunction with either back-propagated action potentials (Magee and Johnston, 1997) or locally induced dendritic spikes (Remy and Spruston, 2007). Glutamate released in the synaptic transmission binds to the N-methyl D-aspartate (NMDA) receptors and opens up their calcium channels which are, because of the brief change in membrane potential, momentarily freed of the Mg2+ ions usually blocking them, and permit Ca2+ ions into the cell interior (Ascher and Nowak, 1988; Bliss and Collingridge, 1993).

It will be emphasized that Fig. 2.4 implies something not yet addressed by experimental data, namely that a set of synapses can be individually selected by the input arriving to them, even when they are not all adjacent; in other words, the synapses reinforced can be interspersed among synapses not reinforced.

From a functional point of view the capacity for such individual synapse selection is expected to be a requirement, because the arriving volleys come from cooperative neuron groups which, although functionally connected at the moment, are not similarly connected at the earlier time when axonal growth decides the location of their potential synapses. Accordingly they cannot be expected to have their synapses all located right next to each other.

The recently developed technique of two-photon glutamate uncaging at preselected sets of synaptic spines (Losonczy and Magee, 2006; Gasparini and Magee, 2006; Losonczy et al., 2008), now makes it feasible to address the issue of individual synapse selection. The results available at this point indicate that the synapses do not need to be concentrated on one portion of a dendrite but can be scattered throughout its length, but do not demonstrate the possibility that some synapses do and other nearby ones do not undergo potentiation. The issue is still open at the time of this writing.
Circuits in the Brain
A Model of Shape Processing in the Primary Visual Cortex
Legény, C.
2009, XXVI, 226 p. 100 illus., Hardcover
ISBN: 978-0-387-88848-4