Contents

1 Superconductors – Introduction ... 1
 1.1 Basic Properties of a Superconductor ... 1
 1.1.1 Zero Resistance ... 1
 1.1.2 Meissner Effect ... 1
 1.1.3 Ring Supercurrent and Flux Quantization 3
 1.1.4 Josephson Effects .. 4
 1.1.5 Energy Gap ... 6
 1.1.6 Sharp Phase Change ... 6
 1.2 Occurrence of a Superconductor .. 7
 1.2.1 Elemental Superconductors ... 7
 1.2.2 Compound Superconductors .. 8
 1.2.3 High-T_c Superconductors ... 9
 1.3 Theoretical Survey ... 9
 1.3.1 The Cause of Superconductivity ... 10
 1.3.2 The Bardeen–Cooper–Schrieffer Theory 10
 1.3.3 Quantum Statistical Theory .. 12
References ... 13

2 Electron–Phonon Interaction ... 15
 2.1 Phonons and Lattice Dynamics ... 15
 2.2 Electron–Phonon Interaction .. 19
 2.3 Phonon–Exchange Attraction .. 23
References ... 27

3 The BCS Ground State .. 29
 3.1 Introduction ... 29
 3.2 The Reduced Hamiltonian ... 30
 3.3 The BCS Ground State ... 32
 3.4 Discussion ... 39
 3.4.1 The Nature of the Reduced Hamiltonian 39
 3.4.2 Binding Energy per Pairon .. 39
 3.4.3 Critical Field B_c and Binding Energy $|w_0|$ 39
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.4</td>
<td>The Energy Gap</td>
<td>40</td>
</tr>
<tr>
<td>3.4.5</td>
<td>The Energy Gap Equations</td>
<td>40</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Neutral Supercondensate</td>
<td>41</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Cooper Pairs (Pairons)</td>
<td>41</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Formation of a Supercondensate and Occurrence of Superconductors</td>
<td>42</td>
</tr>
<tr>
<td>3.4.9</td>
<td>Blurred Fermi Surface</td>
<td>43</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>The Energy Gap Equations</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Energy-Eigenvalue Problem in Second Quantization</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Energies of Quasi-Electrons at 0 K</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Derivation of the Cooper Equation</td>
<td>51</td>
</tr>
<tr>
<td>4.5</td>
<td>Energy Gap Equations at 0 K</td>
<td>54</td>
</tr>
<tr>
<td>4.6</td>
<td>Temperature-Dependent Gap Equations</td>
<td>56</td>
</tr>
<tr>
<td>4.7</td>
<td>Discussion</td>
<td>59</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Ground State</td>
<td>59</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Supercondensate Density</td>
<td>59</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Energy Gap $\Delta(T)$</td>
<td>59</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Energy Gap Equations at 0 K</td>
<td>60</td>
</tr>
<tr>
<td>4.7.5</td>
<td>Energy Gap Equations Below T_c</td>
<td>60</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>Quantum Statistics of Composites</td>
<td>61</td>
</tr>
<tr>
<td>5.1</td>
<td>Ehrenfest–Oppenheimer–Bethe’s Rule</td>
<td>61</td>
</tr>
<tr>
<td>5.2</td>
<td>Two-Particle Composites</td>
<td>62</td>
</tr>
<tr>
<td>5.3</td>
<td>Discussion</td>
<td>68</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>Quantum Statistical Theory</td>
<td>73</td>
</tr>
<tr>
<td>6.1</td>
<td>The Full Hamiltonian</td>
<td>73</td>
</tr>
<tr>
<td>6.2</td>
<td>The Cooper Pair Problem</td>
<td>75</td>
</tr>
<tr>
<td>6.3</td>
<td>Moving Pairons</td>
<td>77</td>
</tr>
<tr>
<td>6.4</td>
<td>The Bose–Einstein Condensation</td>
<td>79</td>
</tr>
<tr>
<td>6.5</td>
<td>The BEC in 3D, $\epsilon = cp$</td>
<td>84</td>
</tr>
<tr>
<td>6.6</td>
<td>Discussion</td>
<td>86</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>Quantum Tunneling</td>
<td>89</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>89</td>
</tr>
<tr>
<td>7.2</td>
<td>Quantum Tunneling in S–I–S Systems</td>
<td>90</td>
</tr>
<tr>
<td>7.3</td>
<td>Quantum Tunneling in S_1–I–S_2</td>
<td>97</td>
</tr>
<tr>
<td>7.4</td>
<td>Discussion</td>
<td>101</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>101</td>
</tr>
</tbody>
</table>
12 **High Temperature Superconductors** .. 157

12.1 Introduction .. 157
12.2 Layered Structures and 2-D Conduction 157
12.3 The Hamiltonian .. 160
12.4 The Ground State ... 163
12.5 High Critical Temperature 166
12.6 The Heat Capacity ... 168
12.7 Two Energy Gaps: Quantum Tunneling 168
 12.7.1 Asymmetric I–V Curves for S–I–N 169
 12.7.2 Scattered Data for Energy Gaps 170
 12.7.3 Complicated I–V Curves 170

References .. 170

13 **Doping Dependence of** T_c ... 173

13.1 Introduction .. 173
13.2 Theory ... 173
13.3 Discussion ... 177

References .. 179

14 **The Susceptibility in Cuprates** ... 181

14.1 Introduction .. 181
14.2 Theory ... 184
14.3 Discussion ... 189

References .. 190

15 **d-Wave Cooper Pair** ... 193

15.1 Introduction .. 193
15.2 Phonon–Exchange Attraction .. 193
15.3 d-Wave Pairon Formalism 195
15.4 Discussion ... 196

References .. 196

16 **Transport Properties Above** T_c ... 197

16.1 Introduction .. 197
16.2 Simple Kinetic Theory ... 198
 16.2.1 Resistivity .. 198
 16.2.2 Hall Coefficient ... 201
 16.2.3 Hall Angle .. 202
16.3 Data Analysis ... 202
16.4 Discussion ... 205

References .. 205

17 **Other Theories** ... 207

17.1 Gorter–Cassimir’s Two Fluid Model 207
Quantum Theory of Conducting Matter
Superconductivity
Fujita, S.; Ito, K.; Godoy, S.
2009, XXIV, 298 p. 85 illus., Hardcover