Contents

1 Spin Dynamics: Fast Switching of Macro-spins 1
 X.R. Wang, Z.Z. Sun, and J. Lu
 1.1 Introduction ... 1
 1.2 Spin and Its Kinetics and Dynamics 3
 1.2.1 Basic Concepts of Spin 3
 1.2.2 Kinetics of Spin: Spin Current 4
 1.2.3 Dynamics of Spin: Bloch Equation,
 Landau–Lifshitz Equation, and Landau–
 Lifshitz–Gilbert Equation 5
 1.3 Macro-spin Reversal with a Static Magnetic Field 9
 1.3.1 A Nonlinear Dynamics Picture of
 Magnetization Reversal 9
 1.3.2 The Exactness of SW-Limit at Infinitely Large
 Dissipation ... 11
 1.3.3 Critical Value of Damping Constant 13
 1.3.4 Ballistic Reversal 15
 1.4 Macro-spin Reversal with a Time-Dependent Magnetic
 Field ... 17
 1.4.1 Strategy I: Field Following the Magnetization
 Motion .. 18
 1.4.2 Strategy II: Synchronizing the Magnetization
 Motion with a Circularly Polarized Microwave 21
 1.4.3 Theoretical Limits of Switching Field/Current
 and Optimal Reversal Pulses 25
 1.5 Summary .. 32
 References .. 32

2 Core–Shell Magnetic Nanoclusters 35
 Jinlan Wang and X.C. Zeng
 2.1 Introduction .. 35
 2.2 Experimental Studies of Core–Shell Magnetic Clusters 37
 2.2.1 Iron-Based (Fe@Au) Core–Shell Nanoclusters 38
 2.2.2 Cobalt-Based Core–Shell Nanoclusters 44
 2.2.3 Ni-Based Core–Shell Nanoclusters 50
2.3 Theoretical Studies of Bimetallic Magnetic Core–Shell Nanoclusters 51
 2.3.1 Iron-Based (Fe@Au) Core–Shell Nanoclusters 51
 2.3.2 Cobalt-Based Core–Shell Nanoclusters .. 53
 2.3.3 Mn-Based Core–Shell Nanoclusters: [Mn\textsubscript{13}@Au\textsubscript{20}]− 59

2.4 Summary .. 60
References ... 62

3 Designed Magnetic Nanostructures ... 67
A. Enders, R. Skomski, and D.J. Sellmyer

3.1 Introduction ... 67
3.2 Structure, Chemistry, and Geometry ... 70
 3.2.1 Synthesis of Supported Nanostructures .. 71
 3.2.2 Case Study: Fe Clusters on Pt Surfaces .. 73
 3.2.3 Structure of Embedded Clusters ... 75
 3.2.4 Case Study: FePt Clusters in a Carbon Matrix 78
3.3 Anisotropy and Hysteresis .. 79
 3.3.1 Surface and Interface Anisotropies ... 80
 3.3.2 Hysteresis of Fe Clusters on Pt ... 81
 3.3.3 Role of Heavy Transition Metals ... 83
 3.3.4 Proteresis .. 85
3.4 Quantum-Mechanical Effects .. 86
 3.4.1 Embedding from a Quantum-Mechanical Point of View 86
 3.4.2 Exchange Interactions ... 87
 3.4.3 Preasymptotic Coupling .. 90
 3.4.4 Kondo Effect ... 92
 3.4.5 Entanglement .. 93
3.5 Concluding Remarks .. 95
References ... 95

4 Superconductivity and Magnetism in Silicon and Germanium Clathrates 105
Joseph H. Ross Jr. and Yang Li

4.1 Introduction .. 106
4.2 Superconductivity in Si\textsubscript{46} Clathrates 108
4.3 Rattler Atoms and Narrow Bands ... 109
4.4 Superconducting Mechanism .. 111
4.5 Zintl Concept and Vacancies .. 115
4.6 Superconductivity in Other Clathrates .. 117
4.7 Magnetism ... 117
4.8 Conclusions .. 119
References ... 119
5 Neutron Scattering of Magnetic Materials
Olivier Isnard
5.1 Introduction
5.2 Interaction of Neutrons and Materials: A Brief Presentation
5.3 Crystal Structure Investigation
5.3.1 Powder Diffraction
5.3.2 Single Crystal Diffraction
5.4 In Situ Neutron Diffraction
5.4.1 Thermodiffraclometry: Crystallization of Amorphous Materials
5.4.2 In Situ Investigation of the Synthesis and Ordering of nanocrystalline FePt Alloys
5.4.3 Time-Resolved Neutron Diffraction Studies
5.5 Magnetic Structure Determination
5.6 Magnetic Phase Transition
5.6.1 Magnetic Phase Transitions Studied by Powder Diffraction
5.6.2 Magnetic Phase Transitions Studied by Single Crystal Diffraction
5.7 Polarized Neutron Techniques
5.7.1 Uniaxial Polarization Analysis
5.7.2 Spherical Neutron Polarimetry
5.8 Small-Angle Neutron Scattering
5.9 Neutron Scattering on Magnetic Surfaces
5.10 Magnetic Excitations
5.11 Neutron Scattering Under Extreme Conditions
5.12 Conclusions
References

6 Tunable Exchange Bias Effects
Ch. Binek
6.1 Introduction
6.2 Electrically Tuned Exchange Bias
6.2.1 Electrically Tuned Exchange Bias with Magnetoelectrics
6.2.2 Electrically Tuned Exchange Bias with Multiferroics
6.2.3 Piezomagnetically and Piezoelectrically Tuned Exchange Bias
6.3 Magnetic Field Control of Exchange Bias
6.4 Training Effect in Exchange-Coupled Bilayers
6.4.1 Physical Background of Training Effects in Various Systems
References
6.4.2 Tuning the Training Effect 178
6.5 Conclusion .. 179
References .. 179

<table>
<thead>
<tr>
<th>7</th>
<th>Dynamics of Domain Wall Motion in Wires with Perpendicular Anisotropy</th>
<th>185</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dafiné Ravelosona</td>
<td>7.1 Introduction</td>
<td>185</td>
</tr>
<tr>
<td>7.2 Basics of Field-Induced DW Motion in Pt/Co/Pt Ultra-Thin Films</td>
<td>7.2.1 Mechanisms of Magnetization Reversal in Pt/Co/Pt Trilayers</td>
<td>187</td>
</tr>
<tr>
<td>7.2.2 Different Regimes of DW Motion: The Role of Defects</td>
<td>7.3 Control and Detection of Single DW Motion in Magnetic Wires</td>
<td>189</td>
</tr>
<tr>
<td>7.3.1 Wires Nanofabrication and Injection of a Single Domain Wall</td>
<td>7.3.2 Electrical Methods to Detect DW Motion Along Tracks</td>
<td>192</td>
</tr>
<tr>
<td>7.4 Field-Induced DW Motion Along Wires: Role of Structural Defects</td>
<td>7.4.1 The Role of Edge Roughness on the Creep Regime in Co/Pt Films</td>
<td>196</td>
</tr>
<tr>
<td>7.4.2 The Role of Intrinsic Defects in Co/Ni Films</td>
<td>7.5 Control of the Pinning Potential</td>
<td>201</td>
</tr>
<tr>
<td>7.5.1 Ion Irradiation of Co/Pt Films: A Way to Reduce Intrinsic Structural Defects</td>
<td>7.5.2 A DW Propagating in a Hall Cross: An Artificial Pinning Potential</td>
<td>203</td>
</tr>
<tr>
<td>7.6 Current Induced DW Depinning</td>
<td>7.7 Conclusion</td>
<td>207</td>
</tr>
<tr>
<td>References</td>
<td>8</td>
<td>Magnetic Nanowires for Domain Wall Logic and Ultrahigh Density Data Storage</td>
</tr>
<tr>
<td>R.P. Cowburn</td>
<td>8.1 Domain Wall Propagation and Nucleation</td>
<td>219</td>
</tr>
<tr>
<td>8.2 Domain Wall Conduits</td>
<td>8.3 The NOT Gate and Shift Register Element</td>
<td>221</td>
</tr>
<tr>
<td>8.4 Data Input–Output</td>
<td>8.5 Using the Chirality of the Transverse Domain Wall</td>
<td>223</td>
</tr>
<tr>
<td>8.6 Potential Applications of Domain Wall Logic</td>
<td>8.7 Conclusion</td>
<td>226</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9 Bit-Patterned Magnetic Recording: Nanoscale Magnetic Islands for Data Storage 237
Thomas R. Albrecht, Olav Hellwing, Ricardo Ruiz, Manfred E. Schabes, Bruce D. Terris, and Xiao Z. Wu
9.1 Introduction ... 238
9.2 Theoretical Perspective of Bit-Patterned Recording 240
9.2.1 Island Addressability in Bit-Patterned Recording 240
9.2.2 Fabrication Tolerances of BPM 242
9.2.3 Thermal Constraints 243
9.2.4 Magnetostatic Interaction Fields Between Islands 245
9.2.5 BPM Designs for Tb/in² Densities 246
9.3 Optimization of the Magnetic Materials 248
9.3.1 Magnetic Characterization 249
9.3.2 Magnetic Switching-Field Distribution 252
9.3.3 Laminated Magnetic Media 254
9.3.4 Magnetic Trench Noise Reduction 255
9.4 Fabrication of Bit-Patterned Media 256
9.5 Generation of Master Patterns Beyond 1Tbit/in² via Guided Self-Assembly of Block Copolymer Domain Arrays .. 259
9.5.1 Ordering, Size Distribution, and Scalability: Patterned Media Requirements vs. Block Copolymer Fundamental Limitations ... 260
9.5.2 Approaches to Long-Range Orientational and Translational Order in Block Copolymer Templates .. 262
9.6 Write Synchronization .. 265
9.6.1 Requirements for Write Synchronization 265
9.6.2 Options to Achieve Write Synchronization 265
9.6.3 Timing Variations Observed in a Conventional Drive 266
9.6.4 Implementation of a Sector Synchronization System 268
9.7 Conclusion .. 270
References ... 271
10 The Magnetic Microstructure of Nanostructured Materials 275
Rudolf Schäfer
10.1 Overview .. 275
10.2 Coarse-Grained Material and Amorphous Ribbons 277
10.3 Domains in Nanocrystalline Ribbons 282
10.3.1 Random Anisotropy Model 283
10.3.2 Interplay of Random and Uniaxial Anisotropies 287
10.3.3 Magnetization Process 292
10.4 Domains in Nanocrystalline Magnetic Films 296
10.5 Domains in Fine- and Nanostructured Permanent Magnets \(.\) 301
10.6 Summary \(\) \(\) \(\) 304
References \(\) \(\) \(\) 304

11 Exchange-Coupled Nanocomposite Permanent Magnets \(\) 309
J.P. Liu
11.1 Introduction \(\) \(\) 309
11.2 Fundamental Aspects \(\) \(\) 311
 11.2.1 The Early Models \(\) \(\) 311
 11.2.2 The Soft Phase Effects \(\) \(\) 313
 11.2.3 The Interface Effects \(\) \(\) 314
 11.2.4 Coercivity Mechanisms \(\) \(\) 316
 11.2.5 Characterization of Inter-phase Exchange CoUprising \(\) \(\) 316
11.3 Experimental Approaches \(\) \(\) 321
 11.3.1 The Early Approaches \(\) \(\) 321
 11.3.2 Nanoparticle Approaches \(\) \(\) 322
 11.3.3 Fabrication of Nanocomposite Bulk Magnets \(\) \(\) 327
11.4 Work Toward Anisotropic Nanocomposite Magnets \(\) \(\) 331
References \(\) \(\) \(\) 332

12 High-Temperature Samarium Cobalt Permanent Magnets \(\) 337
Oliver Gutfleisch
12.1 Introduction \(\) \(\) 337
12.2 Physical Metallurgy and Crystal Structures \(\) \(\) 339
12.3 Coercivity Mechanism and the Development of High-Temperature 2:17-Type Magnets \(\) \(\) 343
 12.3.1 The Sm(CoCu)\(_5\) Cell Boundary Phase \(\) \(\) 343
 12.3.2 Alloy Optimization \(\) \(\) 344
 12.3.3 Stability at Operating Temperature \(\) \(\) 348
12.4 Microchemistry and Pinning Behavior in Sm\(_2\)Co\(_{17}\)-Type Magnets \(\) \(\) 349
 12.4.1 Redistribution of Cu and Slow Cooling \(\) \(\) 349
 12.4.2 Stability of Microchemistry \(\) \(\) 352
 12.4.3 “Anomalous” Coercivity Behavior \(\) \(\) 355
12.5 Magnetic Domains and Coercivity \(\) \(\) \(\) 357
 12.5.1 Analysis of Magnetic Microstructure \(\) \(\) 357
 12.5.2 Domains and Processing Parameters \(\) \(\) 358
12.6 Non-equilibrium Processing Routes \(\) \(\) \(\) 362
 12.6.1 Rapidly Quenched SmCo\(_5\)/Sm\(_2\)Co\(_{17}\) Magnets \(\) \(\) 362
 12.6.2 Mechanically Alloyed SmCo\(_5\)/Sm\(_2\)Co\(_{17}\) Magnets \(\) \(\) 363
 12.6.3 Hydrogen Disproportionated SmCo\(_5\) and Sm\(_2\)Co\(_{17}\) Alloys \(\) \(\) 364
References \(\) \(\) \(\) 367
Nanostructured Soft Magnetic Materials

Matthew A. Willard and Maria Daniil

13.1 Introduction

13.2 Materials Development

13.2.1 Alloy Processing and Design

13.2.2 Phase Transformations

13.2.3 Annealing Techniques

13.3 Magnetic Performance

13.3.1 Exchange-Averaged Anisotropy

13.3.2 Intrinsic Magnetic Properties

13.3.3 Domain Structure

13.3.4 Hysteretic Losses

13.3.5 AC Properties

13.3.6 Thermomagnetics

13.4 Applications

13.4.1 Power Applications

13.4.2 Electromagnetic Interference Applications

13.4.3 Sensor Applications

13.5 Summary

References

Magnetic Shape Memory Phenomena

Oleg Heczko, Nils Scheerbaum, and Oliver Gutfleisch

14.1 Introduction

14.2 Martensitic Transformation and Twinning

14.3 Modes of Magnetic Field-Induced Strain

14.3.1 Magnetostriction

14.3.2 Magnetic Field-Induced Phase Transformation

14.4 Magnetically Induced Structure Reorientation

14.5 The Ni–Mn–Ga System

14.5.1 Compositional Dependence of Structure and Transformation

14.5.2 Martensitic Phases in Ni–Mn–Ga

14.5.3 Magnetic Properties of Ni–Mn–Ga

14.6 Twin Boundary Mobility

14.7 Energy Model for MIR

14.8 Angular Dependence

14.9 Reversible and Irreversible MIR Strain

14.10 Temperature Dependence of MIR

14.11 MIR in Polycrystals, Composites, and Films

14.12 Other Applications Based on MSM Alloys

14.13 Conclusion

Further Reading

References
15 Magnetocaloric Effect and Materials
J.R. Sun, B.G. Shen, and F.X. Hu
15.1 Introduction
15.2 Theoretical Description of Magnetocaloric Effect
15.3 Experimental Determination of Magnetocaloric Effect
 15.3.1 Direct Measurement of Adiabatic Temperature Change
 15.3.2 Indirect Measurement of Entropy and Adiabatic Temperature Changes
15.4 Magnetocaloric Effect Associated with First-Order Phase Transition
 15.4.1 MCE Due to an Idealized First-Order Phase Transition
 15.4.2 MCE Due to a Non-Idealized First-Order Phase Transition
15.5 Typical Materials with Giant Magnetocaloric Effect
 15.5.1 LaFe$_{3-x}$M$_x$ (M = Al, Si) Intermetallics
 15.5.2 Gd$_5$(Ge,Si)$_4$ and Related Compounds
 15.5.3 Mn-Based Heusler Alloys
 15.5.4 Mn–As-Based Compounds
15.6 Concluding Remarks
References

16 Spintronics and Novel Magnetic Materials for Advanced Spintronics
Jiwei Lu, Kevin G. West, Jiani Yu, Wenjing Yin, David M. Kirkwood, Li He, Robert Hull, Stuart A. Wolf, and Daryl M. Treger
16.1 Introduction to Spintronics
16.2 Novel Magnetic Oxide Thin Films by Reactive Bias Target Ion Beam Deposition
 16.2.1 Reactive Bias Target Ion Beam Deposition (RBTIBD)
 16.2.2 Cr$_x$ V$_{1-x}$ O$_2$ Thin Films
 16.2.3 Co$_x$ Ti$_{1-x}$ O$_2$ Thin Films
16.3 Diluted Ferromagnetic Ge$_{1-x}$ Mn$_x$ by Ion Implantation
Additional Reading on Spintronics
References

17 Growth and Properties of Epitaxial Chromium Dioxide (CrO$_2$) Thin Films and Heterostructures
Guo-Xing Miao and Arunava Gupta
17.1 Density of States (DOS) of Half-Metallic CrO$_2$ and the Double Exchange Mechanism
17.2 Intrinsic Properties of Epitaxial CrO$_2$ Films
17.3 Influence of Strain on the Magnetic Properties of CrO$_2$ Thin Films

17.3.1 Film Growth on Atomically Smooth TiO$_2$ Substrates

17.3.2 Films Grown on As-Polished TiO$_2$ Substrates

17.4 CrO$_2$-Based Heterostructures

17.4.1 Epitaxial SnO$_2$ Barrier Layer

17.4.2 Epitaxial RuO$_2$ Barrier Layer

17.4.3 VO$_2$ Barrier Layer

17.4.4 TiO$_2$ Barrier Layer

17.4.5 Cr$_2$O$_3$ Barrier Layer

References

18 FePt and Related Nanoparticles

J.W. Harrell, Shishou Kang, David E. Nikles, Gregory B. Thompson, Shifan Shi, and Chandan Srivastava

18.1 Introduction

18.2 Thermal Effects in Magnetic Nanoparticles

18.3 Magnetic Recording and the Superparamagnetic Limit

18.4 Chemical Synthesis and Shape Control of FePt and Related Nanoparticles

18.4.1 Synthesis

18.4.2 Shape Control

18.5 Prevention of Sintered Grain Growth During Annealing

18.5.1 FePt/MnO Core/Shell Nanoparticles

18.5.2 FePt/SiO$_2$ Core/Shell Nanoparticles

18.5.3 Salt Matrix Annealing

18.5.4 Flash Annealing

18.6 Effect of Metal Additives on Chemical Ordering and Sintered Grain Growth

18.7 Easy-Axis Orientation

18.7.1 Model of Easy-Axis Orientation

18.7.2 Easy-Axis Orientation Measurements

18.8 Composition Distribution

18.9 Anisotropy Distribution

18.10 Size Effect on Chemical Ordering

18.11 Summary and Conclusions

References

19 Magnetic Manipulation of Colloidal Particles

Randall M. Erb and Benjamin B. Yellen

19.1 Introduction

19.2 Magnetic Manipulation of Particles

19.2.1 Deterministic and Brownian-Dominated Particle Systems

19.2.2 Material Properties
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2.3</td>
<td>Magnetic Force</td>
<td>568</td>
</tr>
<tr>
<td>19.3</td>
<td>Deterministic Particle Manipulation</td>
<td>570</td>
</tr>
<tr>
<td>19.3.1</td>
<td>Substrate-Based Self-Assembly of Particles</td>
<td>570</td>
</tr>
<tr>
<td>19.3.2</td>
<td>Substrate-Based Transport and Separation</td>
<td>571</td>
</tr>
<tr>
<td>19.4</td>
<td>Brownian-Influenced Particle Manipulation</td>
<td>573</td>
</tr>
<tr>
<td>19.4.1</td>
<td>Magnetic and Nonmagnetic Particle Chains</td>
<td>573</td>
</tr>
<tr>
<td>19.4.2</td>
<td>Magnetic and Nonmagnetic Mixed Assemblies in Ferrofluid</td>
<td>576</td>
</tr>
<tr>
<td>19.4.3</td>
<td>Anisotropic Particle Alignment</td>
<td>576</td>
</tr>
<tr>
<td>19.5</td>
<td>Brownian-Dominated Manipulation of Particle Populations</td>
<td>579</td>
</tr>
<tr>
<td>19.5.1</td>
<td>Modeling Thermal Diffusion</td>
<td>579</td>
</tr>
<tr>
<td>19.5.2</td>
<td>Magnetic Particle Concentration</td>
<td>581</td>
</tr>
<tr>
<td>19.5.3</td>
<td>Nonmagnetic Particle Concentrations</td>
<td>584</td>
</tr>
<tr>
<td>19.5.4</td>
<td>Applications of Concentration Gradients</td>
<td>586</td>
</tr>
<tr>
<td>19.6</td>
<td>Conclusions and Outlook</td>
<td>587</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>588</td>
</tr>
</tbody>
</table>

20 **Applications of Magnetic Nanoparticles in Biomedicine** | 591 |
Carlos Bárcena, Amandeep K. Sra, and Jinming Gao		
20.1	Introduction	591
20.2	Nanoparticle Classification	592
20.3	Syntheses of SPIO Nanoparticles	593
20.3.1	Co-precipitation	593
20.3.2	Microemulsion	594
20.3.3	Thermal Decomposition	595
20.3.4	Alternative Methods	596
20.4	Surface Modifications of Magnetic Nanoparticles	596
20.4.1	Organic and Polymeric Stabilizers	597
20.4.2	Inorganic Molecules	598
20.5	Pharmacokinetics and Toxicology	600
20.6	Biomedical Applications of Magnetic Nanoparticles	603
20.6.1	Magnetic Resonance Imaging	603
20.6.2	Therapeutic Applications	612
20.7	Conclusion	616
20.8	Abbreviations	616
	References	618

21 **Nano-Magnetophotonics** | 627 |
Mitsuteru Inoue, Alexander Khanikaev, and Alexander Baryshev		
21.1	Introduction	627
21.2	Magnetophotonic Crystals	628
21.2.1	1D MPCs Composed of Alternating Magnetic and Dielectric Layers	629
21.2.2	Microcavity-Type 1D MPCs	633
21.2.3	Photonic Band Structure and Eigenmodes of 2D MPCs	635
21.2.4 Faraday Rotation of Three-Dimensional Magnetophotonic Crystals 637
21.2.5 Nonlinear Optical and Magneto-Optical Properties ... 640
21.2.6 Conclusion ... 641
21.3 Magnetorefractive Effect in Nanostructures ... 641
21.3.1 Magnetorefractive Effect in Nanostructures and Manganites 642
21.3.2 Enhancement of the MRE in Magnetophotonic Crystals 644
21.3.3 Conclusion ... 647
21.4 Plasmon-Enhanced Magneto-Optical Responses ... 647
21.4.1 Garnet–Noble Metal Nanocomposites .. 648
21.4.2 Metal–Garnet Structures Supporting Transmission Resonances 651
21.4.3 Conclusion ... 653
References ... 653

22 Hard Magnetic Materials for MEMS Applications .. 661
Nora M. Dempsey
22.1 An Introduction to MEMS ... 661
 22.1.1 What Are MEMS? ... 661
 22.1.2 How Are MEMS Made? ... 662
22.2 Magnetic MEMS ... 662
 22.2.1 Downscaling Magnetic Systems .. 663
 22.2.2 Prototype Magnetic MEMS .. 665
22.3 Permanent Magnets ... 666
22.4 Fabrication of μ-Magnets: Top-Down Routes .. 667
 22.4.1 Bulk Processed Magnets .. 668
 22.4.2 Bulk Processed Hard Magnetic Powders .. 669
22.5 Fabrication of Thick Hard Magnetic Films ... 671
 22.5.1 Electrodeposition ... 672
 22.5.2 Sputtering .. 672
 22.5.3 Pulsed Laser Deposition (PLD) .. 675
22.6 Micro-Patterning of Thick Hard Magnetic Films ... 676
 22.6.1 Topographically Patterned Films .. 676
 22.6.2 Crystallographically Patterned Films ... 679
22.7 Conclusions and Perspectives ... 680
References ... 680

23 Solid-State Magnetic Sensors for Bioapplications .. 685
Goran Mihajlović and Stephan von Molnár
23.1 Introduction ... 685
23.2 Magnetic Sensors Based on GMR Effect ... 687
 23.2.1 GMR Sensors ... 689
 23.2.2 Spin Valve Sensors ... 693
23.2.3 GMR and Spin Valve Sensors for Detection of Nanoparticles ... 695
23.3 MTJ Sensors .. 697
23.4 Sensors Based on AMR Effect 700
 23.4.1 AMR Ring Sensors 700
 23.4.2 Planar Hall Effect Sensors 700
23.5 Hall Effect Sensors .. 702
23.6 GMI Sensors .. 706
23.7 Conclusions ... 707
References ... 708
Index ... 711
Nanoscale Magnetic Materials and Applications
Liu, J.P.; Fullerton, E.; Gutfleisch, O.; Sellmyer, D.J. (Eds.)
2009, XXIV, 719 p., Hardcover
ISBN: 978-0-387-85598-1