Contents

Preface .. ix

1 Introduction ... 1

Part I CONVEX ANALYSIS ON PHASE SPACE

2 Legendre-Fenchel Duality on Phase Space ... 25
 2.1 Basic notions of convex analysis ... 25
 2.2 Subdifferentiability of convex functions ... 26
 2.3 Legendre duality for convex functions .. 28
 2.4 Legendre transforms of integral functionals .. 31
 2.5 Legendre transforms on phase space ... 32
 2.6 Legendre transforms on various path spaces .. 38
 2.7 Primal and dual problems in convex optimization 45

3 Self-dual Lagrangians on Phase Space ... 49
 3.1 Invariance under Legendre transforms up to an automorphism 49
 3.2 The class of self-dual Lagrangians .. 51
 3.3 Self-dual Lagrangians on path spaces .. 55
 3.4 Uniform convexity of self-dual Lagrangians .. 57
 3.5 Regularization of self-dual Lagrangians .. 59
 3.6 Evolution triples and self-dual Lagrangians .. 62

4 Skew-Adjoint Operators and Self-dual Lagrangians ... 67
 4.1 Unbounded skew-symmetric operators and self-dual Lagrangians 67
 4.2 Green-Stokes formulas and self-dual boundary Lagrangians 73
 4.3 Unitary groups associated to skew-adjoint operators and self-duality 78

5 Self-dual Vector Fields and Their Calculus ... 83
 5.1 Vector fields derived from self-dual Lagrangians 84
 5.2 Examples of B-self-dual vector fields ... 86
5.3 Operations on self-dual vector fields .. 88
5.4 Self-dual vector fields and maximal monotone operators 91

Part II COMPLETELY SELF-DUAL SYSTEMS AND THEIR LAGRANGIANS

6 Variational Principles for Completely Self-dual Functionals 99
 6.1 The basic variational principle for completely self-dual functionals .. 99
 6.2 Complete self-duality in non-selfadjoint Dirichlet problems 103
 6.3 Complete self-duality and non-potential PDEs in divergence form . 107
 6.4 Completely self-dual functionals for certain differential systems . 110
 6.5 Complete self-duality and semilinear transport equations 113

7 Semigroups of Contractions Associated to Self-dual Lagrangians 119
 7.1 Initial-value problems for time-dependent Lagrangians 120
 7.2 Initial-value parabolic equations with a diffusive term 125
 7.3 Semigroups of contractions associated to self-dual Lagrangians ... 129
 7.4 Variational resolution for gradient flows of semiconvex functions . 135
 7.5 Parabolic equations with homogeneous state-boundary conditions . 137
 7.6 Variational resolution for coupled flows and wave-type equations . 140
 7.7 Variational resolution for parabolic-elliptic variational inequalities .. 143

8 Iteration of Self-dual Lagrangians and Multiparameter Evolutions 147
 8.1 Self-duality and nonhomogeneous boundary value problems 148
 8.2 Applications to PDEs involving the transport operator 153
 8.3 Initial-value problems driven by a maximal monotone operator ... 155
 8.4 Lagrangian intersections of convex-concave Hamiltonian systems ... 161
 8.5 Parabolic equations with evolving state-boundary conditions 162
 8.6 Multiparameter evolutions .. 166

9 Direct Sum of Completely Self-dual Functionals 175
 9.1 Self-dual systems of equations ... 176
 9.2 Lifting self-dual Lagrangians to $A^2_H[0,T]$ 178
 9.3 Lagrangian intersections via self-duality 180

10 Semilinear Evolution Equations with Self-dual Boundary Conditions .. 187
 10.1 Self-dual variational principles for parabolic equations 187
 10.2 Parabolic semilinear equations without a diffusive term 191
 10.3 Parabolic semilinear equation with a diffusive term 195
 10.4 More on skew-adjoint operators in evolution equations 199
Part III SELF-DUAL SYSTEMS AND THEIR ANTISYMMETRIC HAMILTONIANS

11 The Class of Antisymmetric Hamiltonians .. 205
 11.1 The Hamiltonian and co-Hamiltonians of self-dual Lagrangians 206
 11.2 Regular maps and antisymmetric Hamiltonians 210
 11.3 Self-dual functionals .. 212

12 Variational Principles for Self-dual Functionals and First Applications 217
 12.1 Ky Fan’s min-max principle ... 217
 12.2 Variational resolution for general nonlinear equations 220
 12.3 Variational resolution for the stationary Navier-Stokes equations 227
 12.4 A variational resolution for certain nonlinear systems 230
 12.5 A nonlinear evolution involving a pseudoregular operator 232

13 The Role of the Co-Hamiltonian in Self-dual Variational Problems 241
 13.1 A self-dual variational principle involving the co-Hamiltonian 241
 13.2 The Cauchy problem for Hamiltonian flows 242
 13.3 The Cauchy problem for certain nonconvex gradient flows 247

14 Direct Sum of Self-dual Functionals and Hamiltonian Systems 253
 14.1 Self-dual systems of equations ... 253
 14.2 Periodic orbits of Hamiltonian systems ... 260
 14.3 Lagrangian intersections .. 267
 14.4 Semiconvex Hamiltonian systems .. 270

15 Superposition of Interacting Self-dual Functionals 275
 15.1 The superposition in terms of the Hamiltonians 275
 15.2 The superposition in terms of the co-Hamiltonians 278
 15.3 The superposition of a Hamiltonian and a co-Hamiltonian 281

Part IV PERTURBATIONS OF SELF-DUAL SYSTEMS

16 Hamiltonian Systems of Partial Differential Equations 287
 16.1 Regularity and compactness via self-duality 288
 16.2 Hamiltonian systems of PDEs with self-dual boundary conditions 289
 16.3 Nonpurely diffusive Hamiltonian systems of PDEs 299

17 The Self-dual Palais-Smale Condition for Noncoercive Functionals 305
 17.1 A self-dual nonlinear variational principle without coercivity 306
 17.2 Superposition of a regular map with an unbounded linear operator 309
 17.3 Superposition of a nonlinear map with a skew-adjoint operator 315
18 Navier-Stokes and other Self-dual Nonlinear Evolutions 319
 18.1 Elliptic perturbations of self-dual functionals 319
 18.2 A self-dual variational principle for nonlinear evolutions ... 323
 18.3 Navier-Stokes evolutions 331
 18.4 Schrödinger evolutions ... 340
 18.5 Noncoercive nonlinear evolutions 342

References .. 345

Index ... 353
Self-dual Partial Differential Systems and Their
Variational Principles
Ghoussoub, N.
2009, XIV, 354 p., Hardcover