Contents

Preface ix
Contributing Authors xi

Part I Component Programming Models

- Behavioural skeletons for component autonomic management on grids
 Marco Aldinucci, Sonia Campa, Marco Danelutto, Patrizio Dazzi, Domenico Laforenza, Nicola Tonellotto, Peter Kilpatrick
 3

- Towards GCM re-configuration - extending specification by norms
 Alessandro Basso, Alexander Bolotov
 17

- A Flexible Model and Implementation of Component Controllers
 Francoise Baude, Denis Caromel, Ludovic Henrio and Paul Naoumenko
 31

- Analysis of Component Model Extensions to Support the GriCoL Language
 Hinde Bouziane, Natalia Currie-Linde, Christian Perez and Michael Resch
 45

Part II Resource Discovery and Scheduling

- Peer-to-Peer Approaches to Grid Resource Discovery
 Ann Chervenak and Shishir Bharathi
 59

- GRID superscalar and job mapping on the reliable grid resources
 Ani Anciaux–Sedrakian, Rosa M. Badia, Raul Sirvent and Josep M. Pérez, Thilo Kielmann and Andre Merzky
 77

- Implementation of a Hybrid P2P-based Grid Resource Discovery System
 Harris Papadakis, Paolo Trunfio, Domenico Talia, Paraskevi Fragopoulou
 89

- Backfilling Strategies for Scheduling Stream of Jobs on Computational Farms
 R. Baraglia, G. Capannini, M. Pasquali D. Puppin, L. Ricci, A.D. Techiouba
 103

Part III Development and Runtime Environments

- Component-Based Development Environment for Grid Systems
 Artie Basukoski, Vladimir Getov, Jeyarajan Thiyagalingam, Stavros Isaiadis
 119
Grid-enabling a Problem Solving Environment: Implementation Everyday Use

Konstantinos Georgiou, Giorgos Kollias and Efstratios Gallopoulos

A Component-Based Integrated Toolkit

Enric Tejedor and Rosa M. Badia, Thilo Kielmann, Vladimir Getov

Overlay Services for Dynamic VOs

Per Brand, Joel Hoglund and Konstantin Popov, Noel de Palma, Fabienne Boyer and Nikos Parlavantzas, Vladimir Vlassov and Ahmad Al-Shishtawy

Carrying the Crash-only Software Concept to the Legacy Application Servers

Javier Alonso and Jordi Torres, Luis Silva

Bounded Site Failures: an Approach to Unreliable Grid Environments

Joaquim Gabarro, Alina Garcia, Maurice Clint, Peter Kilpatrick, Alan Stewart

Part IV Workflow Programming

Programming e-Science Gateways

Dennis Gannon

Re-evaluating the Grid: the Social Life of Programs

David De Roure, Carole Goble

Workflows on macro data flow through aspects

Marco Danelutto, Patrizio Dazzi

Heterogeneous Data Sources in GRID Workflows

Tamas Kiss, Alexandru Tudose, Gabor Terstyanszky, Peter Kacsuk, Gergely Sipos

Part V Checkpointing and Monitoring

Result Error Detection on Heterogeneous and Volatile Resources

Derrick Kondo, Filipe Araujo and Luis Silva, Patricio Domingues

FailRank: Failure Monitoring and Ranking System

D. Zeinalipour-Yazti, K. Neocleous, C. Georgiou, M.D. Dikaiakos

A Fault-Injector Tool to Evaluate Failure Detectors in Grid-Services

Nuno Rodrigues, Décio Sousa, Luis Silva

Performance monitoring of GRID superscalar with OCM-G/G-PM: improvements

Rosa M. Badia and Raul Sirvent, Marian Bubak, Wlodzimierz Funika and Piotr Machner

A Scalable Multi-Agent Infrastructure for Remote Failure Detection

Decio Sousa, Nuno Rodrigues, Luis Silva
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Distributed and Replicated Service for Checkpoint Storage</td>
<td>293</td>
</tr>
<tr>
<td>Fatihah Bouabache, Thomas Herault, Gilles Fedak, Franck Cappello</td>
<td></td>
</tr>
</tbody>
</table>

Part VI Applications and Use Cases

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-level Scripting Approach</td>
<td>307</td>
</tr>
<tr>
<td>Maciej Malawski, Tomasz Guba, Marek Kasztelnik, Tomasz Bartynski,</td>
<td></td>
</tr>
<tr>
<td>Marian Bubak, Francoise Baude and Ludovic Henrio</td>
<td></td>
</tr>
<tr>
<td>DKS: Distributed k-ary System Middleware</td>
<td>321</td>
</tr>
<tr>
<td>Roberto Roverso, Cosmin Arad, Ali Ghodsi, Seif Haridi</td>
<td></td>
</tr>
<tr>
<td>Transactions and Concurrency Control for Peer-to-Peer Wikis:</td>
<td>335</td>
</tr>
<tr>
<td>An Evaluation</td>
<td></td>
</tr>
<tr>
<td>Stefan Plantikow, Alexander Reinefeld, Florian Schintke</td>
<td></td>
</tr>
<tr>
<td>Efficient Genome Processing in the Grid</td>
<td>349</td>
</tr>
<tr>
<td>Philipp Ludeking, Jan Dunnweber and Sergei Gorlatch</td>
<td></td>
</tr>
</tbody>
</table>

Part VII Design Methodologies for Grid Systems

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SZTAKI Desktop Grid: Building a scalable, secure Desktop Grid platform</td>
<td>363</td>
</tr>
<tr>
<td>Attila Marosi, Gabor Gombas, Zoltan Balaton, Peter Kacsuk, Tamas Kiss</td>
<td></td>
</tr>
<tr>
<td>P2P Techniques for Data Distribution in Desktop Grid Computing Platforms</td>
<td>375</td>
</tr>
<tr>
<td>Fernando Costa, Luis Silva, Ian Kelley, Ian Taylor</td>
<td></td>
</tr>
<tr>
<td>Tackling the Collusion Threat in P2P-Enhanced Internet Desktop Grids</td>
<td>391</td>
</tr>
<tr>
<td>Gheorghe Silaghi, Luis Silva, Patricio Domingues, Alvaro E. Arenas</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>401</td>
</tr>
</tbody>
</table>
Making Grids Work
Danelutto, M.; Fragopoulou, P.; Getov, V. (Eds.)
2008, XX, 404 p., Hardcover