Preface

The study of brain function is one of the most fascinating pursuits of modern science. Functional neuroimaging is an important component of much of the current research in cognitive, clinical, and social psychology. The excitement of studying the brain is recognized in both the popular press and the scientific community. In the pages of mainstream publications, including *The New York Times* and *Wired*, readers can learn about cutting-edge research into topics such as understanding how customers react to products and advertisements (“If your brain has a ‘buy button,’ what pushes it?” *The New York Times*, October 19, 2004), how viewers respond to campaign ads (“Using M.R.I.’s to see politics on the brain,” *The New York Times*, April 20, 2004; “This is your brain on Hillary: Political neuroscience hits new low,” *Wired*, November 12, 2007), how men and women react to sexual stimulation (“Brain scans arouse researchers,” *Wired*, April 19, 2004), distinguishing lies from the truth (“Duped,” *The New Yorker*, July 2, 2007; “Woman convicted of child abuse hopes fMRI can prove her innocence,” *Wired*, November 5, 2007), and even what separates “cool” people from “nerds” (“If you secretly like Michael Bolton, we’ll know,” *Wired*, October 2004). Reports on pathologies such as autism, in which neuroimaging plays a large role, are also common (for instance, a *Time* magazine cover story from May 6, 2002, entitled “Inside the world of autism”). The 1990s were designated “The Decade of the Brain” by the National Institute of Mental Health and the Library of Congress; the 2003 Nobel Prize in Medicine was awarded for research that lies at the foundation of functional magnetic resonance imaging (fMRI), one of the most prevalent and popular tools used for studying brain function.

Statisticians have a key role to play in this research, since the data that are obtained from these studies are remarkably complex (correlated in time and in space in ways that are still not fully understood) and massive (a typical number might be hundreds of thousands of time series for a single subject, one for each “voxel,” or volume element, of the brain). The number of subjects on the other hand is generally small, a situation that creates challenges for statistical inference. Statisticians have already made many important contributions
to the field, and as more universities set up imaging centers of their own, the
presence of on-site statistical experts becomes more important. Obtaining the
necessary background in neuroimaging and neuroscience, however, can take
many years of intense study. My goal in writing this book was to provide an
introduction to functional magnetic resonance imaging, aimed at statisticians,
that would highlight the important scientific issues and survey the common
(and some not so common) analysis pathways.

The primary intended audience is statisticians who are interested in this
growing field and who wish to gain an understanding of the major problems
and current solutions. A secondary audience is cognitive psychologists and
other neuroscientists who use fMRI as a research tool. This book can also
serve them as a summary of the major statistical questions in the analysis of
functional neuroimaging data and of the commonly used methods. Readers
need only be familiar with basic graduate level statistics – linear models, gen-
eral and generalized linear models, nonparametric statistics, Bayesian theory,
and the like.

The first three chapters of this book give the scientific background: a brief
introduction of how fMRI data are acquired appears in Chapter 1, followed
by chapters on experimental design and data preprocessing. Chapter 4 is a
“bridge” chapter, summarizing the major statistical issues and setting the
stage for the core of the book, chapters 5 through 10. These chapters describe
the various statistical approaches that have been taken for analyzing fMRI
data, from the popular general linear model (Chapter 5), through spatiotem-
poral models (Chapter 6), multivariate approaches (Chapter 7), analyses using
basis functions (Chapter 8), and Bayesian analysis (Chapter 9). Chapter 10
covers the important problem of multiple testing in fMRI. Chapter 11 is the
other end of the “bridge” connecting to Chapter 4 – a look back at additional
statistical questions in light of the knowledge acquired in the previous chap-
ters. Finally, Chapter 12 presents analysis of a real data set as a simple case
study.

It is worth emphasizing that no book of this nature can ever be completely
comprehensive, nor can it be totally current. The pace of statistical research
and innovation is such that, almost by definition, such a book would be out
of date before it could be published. I have aimed instead to give readers an
overview, with some detail, of the most commonly used methods, sprinkled
with an accounting of some of the more idiosyncratic approaches. In this way
I hope to show the richness and creativity of existing statistical analyses and
make new researchers aware of what has already been attempted.

I have been fortunate in my more than ten years of working in this field to
have learned from and interacted with many talented statisticians and psy-
chologists. My thanks go to Jeongyoun Ahn, Jim Becker, Yoav Benjamini,
Dulal Bhaumik, DuBois Bowman, Pat Carpenter, Bill Eddy, Chris Genovese,
Robert Gibbons, Marcel Just, Ming-Hung (Jason) Kao, Tim Keller, Chris-
tine Krisky, Yehua Li, Beatriz Luna, Jennifer McDowell, Rebecca McNamee,
Abhyuday Mandal, Stephen Miller, Ana Moura, Tom Nichols, Todd Ogden,
Cheolwoo Park, Sumitra Purkayastha, Lynne Seymour, Taniya Sikdar, Andrew Sornborger, Lin Sun, John Sweeney, Keith Thulborn, Joel Welling, Nathan Yanasak, Jun Ye, and Qun Zhao for helpful conversations over the years and for reading parts of this manuscript as it was in progress. Several anonymous reviewers provided useful comments and suggestions. Special thanks to Heidi Sestrich for help with Latex. My appreciation also to John Kimmel at Springer for his patience and technical advice.

As always, none of this would have been possible without the help, encouragement and love of my parents, Morty and Rita Lazar, my brother Michael, and my husband David Sidore. My heartfelt thanks to you all for seeing me through this latest endeavor.

Nicole Lazar
Athens, Georgia
January 2008
The Statistical Analysis of Functional MRI Data
Lazar, N.
2008, XIV, 299 p., Hardcover