Contents

Part I Basic Theory

1 Introduction ... 3
 1.1 Definition and History 3
 1.2 Speaker Recognition Branches 5
 1.2.1 Speaker Verification (Speaker Authentication) 5
 1.2.2 Speaker Identification (Closed-Set and Open-Set) 7
 1.2.3 Speaker and Event Classification 8
 1.2.4 Speaker Segmentation 9
 1.2.5 Speaker Detection 11
 1.2.6 Speaker Tracking 11
 1.3 Speaker Recognition Modalities 12
 1.3.1 Text-Dependent Speaker Recognition 12
 1.3.2 Text-Independent Speaker Recognition 13
 1.3.3 Text-Prompted Speaker Recognition 14
 1.3.4 Knowledge-Based Speaker Recognition 15
 1.4 Applications .. 16
 1.4.1 Financial Applications 16
 1.4.2 Forensic and Legal Applications 18
 1.4.3 Access Control (Security) Applications 19
 1.4.4 Audio and Video Indexing (Diarization) Applications ... 19
 1.4.5 Surveillance Applications 20
 1.4.6 Teleconferencing Applications 21
 1.4.7 Proctorless Oral Testing 21
 1.4.8 Other Applications 23
 1.5 Comparison to Other Biometrics 23
 1.5.1 Deoxyribonucleic Acid (DNA) 24
 1.5.2 Ear ... 25
 1.5.3 Face .. 27
 1.5.4 Fingerprint and Palm 28
 1.5.5 Hand and Finger Geometry 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.6</td>
<td>Iris</td>
<td>30</td>
</tr>
<tr>
<td>1.5.7</td>
<td>Retina</td>
<td>31</td>
</tr>
<tr>
<td>1.5.8</td>
<td>Thermography</td>
<td>32</td>
</tr>
<tr>
<td>1.5.9</td>
<td>Vein</td>
<td>32</td>
</tr>
<tr>
<td>1.5.10</td>
<td>Gait</td>
<td>33</td>
</tr>
<tr>
<td>1.5.11</td>
<td>Handwriting</td>
<td>34</td>
</tr>
<tr>
<td>1.5.12</td>
<td>Keystroke</td>
<td>35</td>
</tr>
<tr>
<td>1.5.13</td>
<td>Multimodal</td>
<td>35</td>
</tr>
<tr>
<td>1.5.14</td>
<td>Summary of Speaker Biometric Characteristics</td>
<td>37</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>The Anatomy of Speech</td>
<td>43</td>
</tr>
<tr>
<td>2.1</td>
<td>The Human Vocal System</td>
<td>44</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Trachea and Larynx</td>
<td>44</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Vocal Folds (Vocal Chords)</td>
<td>44</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Pharynx</td>
<td>47</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Soft Palate and the Nasal System</td>
<td>48</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Hard Palate</td>
<td>48</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Oral Cavity Exit</td>
<td>48</td>
</tr>
<tr>
<td>2.2</td>
<td>The Human Auditory System</td>
<td>48</td>
</tr>
<tr>
<td>2.2.1</td>
<td>The Ear</td>
<td>50</td>
</tr>
<tr>
<td>2.3</td>
<td>The Nervous System and the Brain</td>
<td>51</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Neurons – Elementary Building Blocks</td>
<td>52</td>
</tr>
<tr>
<td>2.3.2</td>
<td>The Brain</td>
<td>54</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Function Localization in the Brain</td>
<td>59</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Specializations of the Hemispheres of the Brain</td>
<td>62</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Audio Production</td>
<td>64</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Auditory Perception</td>
<td>66</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Speaker Recognition</td>
<td>71</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>Signal Representation of Speech</td>
<td>75</td>
</tr>
<tr>
<td>3.1</td>
<td>Sampling The Audio</td>
<td>77</td>
</tr>
<tr>
<td>3.1.1</td>
<td>The Sampling Theorem</td>
<td>78</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Convergence Criteria for the Sampling Theorem</td>
<td>84</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Extensions of the Sampling Theorem</td>
<td>84</td>
</tr>
<tr>
<td>3.2</td>
<td>Quantization and Amplitude Errors</td>
<td>85</td>
</tr>
<tr>
<td>3.3</td>
<td>The Speech Waveform</td>
<td>87</td>
</tr>
<tr>
<td>3.4</td>
<td>The Spectrogram</td>
<td>87</td>
</tr>
<tr>
<td>3.5</td>
<td>Formant Representation</td>
<td>89</td>
</tr>
<tr>
<td>3.6</td>
<td>Practical Sampling and Associated Errors</td>
<td>92</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Ideal Sampler</td>
<td>98</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Aliasing</td>
<td>99</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Truncation Error</td>
<td>102</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Jitter</td>
<td>103</td>
</tr>
</tbody>
</table>
4 Phonetics and Phonology .. 107
 4.1 Phonetics .. . 107
 4.1.1 Initiation .. 109
 4.1.2 Phonation ... 109
 4.1.3 Articulation 110
 4.1.4 Coordination 111
 4.1.5 Vowels ... 112
 4.1.6 Pulmonic Consonants 115
 4.1.7 Whisper .. 119
 4.1.8 Whistle ... 119
 4.1.9 Non-Pulmonic Consonants........................... 120
 4.2 Phonology and Linguistics 122
 4.2.1 Phonemic Utilization Across Languages 122
 4.2.2 Whisper .. 125
 4.2.3 Importance of Vowels in Speaker Recognition........... 127
 4.2.4 Evolution of Languages toward Discriminability......... 129
 4.3 Suprasegmental Features of Speech 131
 4.3.1 Prosodic Features 132
 4.3.2 Metrical features of Speech 138
 4.3.3 Temporal features of Speech 140
 4.3.4 Co-Articulation 140
References 141

5 Signal Processing of Speech and Feature Extraction 143
 5.1 Auditory Perception .. 144
 5.1.1 Pitch ... 146
 5.1.2 Loudness ... 149
 5.1.3 Timbre ... 151
 5.2 The Sampling Process 152
 5.2.1 Anti-Aliasing 153
 5.2.2 Hi-Pass Filtering 153
 5.2.3 Pre-Emphasis 153
 5.2.4 Quantization 155
 5.3 Spectral Analysis and Direct Method Features 157
 5.3.1 Framing the Signal 160
 5.3.2 Windowing .. 162
 5.3.3 Discrete Fourier Transform (DFT) and Spectral Estimation167
 5.3.4 Frequency Warping 169
 5.3.5 Magnitude Warping 172
 5.3.6 Mel Frequency Cepstral Coefficients (MFCC) 173
 5.3.7 Mel Cepstral Dynamics 175
 5.4 Linear Predictive Cepstral Coefficients (LPCC) 176
References 177
5.4.1 Autoregressive (AR) Estimate of the PSD 177
5.4.2 LPC Computation .. 184
5.4.3 Partial Correlation (PARCOR) Features 185
5.4.4 Log Area Ratio (LAR) Features 189
5.4.5 Linear Predictive Cepstral Coefficient (LPCC) Features 189
5.5 Perceptual Linear Predictive (PLP) Analysis 190
5.5.1 Spectral Analysis 191
5.5.2 Bark Frequency Warping 191
5.5.3 Equal-Loudness Pre-emphasis 192
5.5.4 Magnitude Warping 193
5.5.5 Inverse DFT .. 193
5.6 Other Features .. 193
5.6.1 Wavelet Filterbanks 194
5.6.2 Instantaneous Frequencies 197
5.6.3 Empirical Mode Decomposition (EMD) 198
5.7 Signal Enhancement and Pre-Processing 199
References ... 199

6 Probability Theory and Statistics 205
6.1 Set Theory .. 205
6.1.1 Equivalence and Partitions 208
6.1.2 R-Rough Sets (Rough Sets) 210
6.1.3 Fuzzy Sets ... 211
6.2 Measure Theory .. 211
6.2.1 Measure ... 212
6.2.2 Multiple Dimensional Spaces 216
6.2.3 Metric Space ... 217
6.2.4 Banach Space (Normed Vector Space) 218
6.2.5 Inner Product Space (Dot Product Space) 219
6.2.6 Infinite Dimensional Spaces (Pre-Hilbert and Hilbert) ... 219
6.3 Probability Measure .. 221
6.4 Integration .. 227
6.5 Functions ... 228
6.5.1 Probability Density Function 229
6.5.2 Densities in the Cartesian Product Space 232
6.5.3 Cumulative Distribution Function 235
6.5.4 Function Spaces 236
6.5.5 Transformations 238
6.6 Statistical Moments 239
6.6.1 Mean .. 239
6.6.2 Variance .. 242
6.6.3 Skewness (skew) 245
6.6.4 Kurtosis .. 246
6.7 Discrete Random Variables 247
6.7.1 Combinations of Random Variables 250
Contents

6.7.2 Convergence of a Sequence 250
6.8 Sufficient Statistics .. 251
6.9 Moment Estimation .. 253
 6.9.1 Estimating the Mean 253
 6.9.2 Law of Large Numbers (LLN) 254
 6.9.3 Different Types of Mean 257
 6.9.4 Estimating the Variance 258
6.10 Multi-Variate Normal Distribution 259
References .. 261

7 Information Theory ... 265
 7.1 Sources ... 266
 7.2 The Relation between Uncertainty and Choice 269
 7.3 Discrete Sources 269
 7.3.1 Entropy or Uncertainty 270
 7.3.2 Generalized Entropy 278
 7.3.3 Information 279
 7.3.4 The Relation between Information and Entropy 280
 7.4 Discrete Channels 282
 7.5 Continuous Sources 284
 7.5.1 Differential Entropy (Continuous Entropy) 284
 7.6 Relative Entropy 286
 7.6.1 Mutual Information 291
 7.7 Fisher Information 294
References .. 299

8 Metrics and Divergences 301
 8.1 Distance (Metric) 301
 8.1.1 Distance Between Sequences 302
 8.1.2 Distance Between Vectors and Sets of Vectors 302
 8.1.3 Hellinger Distance 304
 8.2 Divergences and Directed Divergences 304
 8.2.1 Kullbach-Leibler’s Directed Divergence 305
 8.2.2 Jeffreys’ Divergence 305
 8.2.3 Bhattacharyya Divergence 306
 8.2.4 Matsushita Divergence 307
 8.2.5 F-Divergence 308
 8.2.6 δ-Divergence 309
 8.2.7 χ^α Directed Divergence 310
References .. 310

9 Decision Theory .. 313
 9.1 Hypothesis Testing 313
 9.2 Bayesian Decision Theory 316
 9.2.1 Binary Hypothesis 320
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.2</td>
<td>Relative Information and Log Likelihood Ratio</td>
<td>321</td>
</tr>
<tr>
<td>9.3</td>
<td>Bayesian Classifier</td>
<td>322</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Multi-Dimensional Normal Classification</td>
<td>326</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Classification of a Sequence</td>
<td>328</td>
</tr>
<tr>
<td>9.4</td>
<td>Decision Trees</td>
<td>331</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Tree Construction</td>
<td>332</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Types of Questions</td>
<td>333</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Maximum Likelihood Estimation (MLE)</td>
<td>336</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>338</td>
</tr>
<tr>
<td>10</td>
<td>Parameter Estimation</td>
<td>341</td>
</tr>
<tr>
<td>10.1</td>
<td>Maximum Likelihood Estimation</td>
<td>342</td>
</tr>
<tr>
<td>10.2</td>
<td>Maximum A-Posteriori (MAP) Estimation</td>
<td>344</td>
</tr>
<tr>
<td>10.3</td>
<td>Maximum Entropy Estimation</td>
<td>345</td>
</tr>
<tr>
<td>10.4</td>
<td>Minimum Relative Entropy Estimation</td>
<td>346</td>
</tr>
<tr>
<td>10.5</td>
<td>Maximum Mutual Information Estimation (MMIE)</td>
<td>348</td>
</tr>
<tr>
<td>10.6</td>
<td>Model Selection</td>
<td>349</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Akaike Information Criterion (AIC)</td>
<td>350</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Bayesian Information Criterion (BIC)</td>
<td>353</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>354</td>
</tr>
<tr>
<td>11</td>
<td>Unsupervised Clustering and Learning</td>
<td>357</td>
</tr>
<tr>
<td>11.1</td>
<td>Vector Quantization (VQ)</td>
<td>358</td>
</tr>
<tr>
<td>11.2</td>
<td>Basic Clustering Techniques</td>
<td>359</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Standard k-Means (Lloyd) Algorithm</td>
<td>360</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Generalized Clustering</td>
<td>363</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Overpartitioning</td>
<td>364</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Merging</td>
<td>364</td>
</tr>
<tr>
<td>11.2.5</td>
<td>Modifications to the k-Means Algorithm</td>
<td>365</td>
</tr>
<tr>
<td>11.2.6</td>
<td>k-Means Wrappers</td>
<td>368</td>
</tr>
<tr>
<td>11.2.7</td>
<td>Rough k-Means</td>
<td>375</td>
</tr>
<tr>
<td>11.2.8</td>
<td>Fuzzy k-Means</td>
<td>377</td>
</tr>
<tr>
<td>11.2.9</td>
<td>k-Harmonic Means Algorithm</td>
<td>378</td>
</tr>
<tr>
<td>11.2.10</td>
<td>Hybrid Clustering Algorithms</td>
<td>380</td>
</tr>
<tr>
<td>11.3</td>
<td>Estimation using Incomplete Data</td>
<td>381</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Expectation Maximization (EM)</td>
<td>381</td>
</tr>
<tr>
<td>11.4</td>
<td>Hierarchical Clustering</td>
<td>388</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Agglomerative (Bottom-Up) Clustering (AHC)</td>
<td>389</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Divisive (Top-Down) Clustering (DHC)</td>
<td>389</td>
</tr>
<tr>
<td>11.5</td>
<td>Semi-Supervised Learning</td>
<td>390</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>390</td>
</tr>
</tbody>
</table>
12 Transformation

12.1 Principal Component Analysis (PCA) ... 394
 12.1.1 Formulation .. 394
12.2 Generalized Eigenvalue Problem .. 397
12.3 Nonlinear Component Analysis ... 399
 12.3.1 Kernel Principal Component Analysis (Kernel PCA) 400
12.4 Linear Discriminant Analysis (LDA) ... 401
 12.4.1 Integrated Mel Linear Discriminant Analysis (IMELDA) 404
12.5 Factor Analysis ... 404

References ... 409

13 Hidden Markov Modeling (HMM)

13.1 Memoryless Models .. 413
13.2 Discrete Markov Chains ... 415
13.3 Markov Models .. 416
13.4 Hidden Markov Models ... 418
13.5 Model Design and States ... 421
13.6 Training and Decoding ... 423
 13.6.1 Trellis Diagram Representation ... 428
 13.6.2 Forward Pass Algorithm ... 430
 13.6.3 Viterbi Algorithm ... 432
 13.6.4 Baum-Welch (Forward-Backward) Algorithm 433
13.7 Gaussian Mixture Models (GMM) .. 442
 13.7.1 Training ... 444
 13.7.2 Tractability of Models ... 449
13.8 Practical Issues ... 451
 13.8.1 Smoothing ... 451
 13.8.2 Model Comparison ... 453
 13.8.3 Held-Out Estimation ... 456
 13.8.4 Deleted Estimation ... 461

References ... 462

14 Neural Networks

14.1 Perceptron .. 466
14.2 Feedforward Networks ... 466
 14.2.1 Auto Associative Neural Networks (AANN) 469
 14.2.2 Radial Basis Function Neural Networks (RBFNN) 469
 14.2.3 Training (Learning) Formulation .. 470
 14.2.4 Optimization Problem ... 473
 14.2.5 Global Solution .. 474
14.3 Recurrent Neural Networks (RNN) .. 476
14.4 Time-Delay Neural Networks (TDNNs) .. 477
14.5 Hierarchical Mixtures of Experts (HME) 479
14.6 Practical Issues ... 479

References ... 481
15 Support Vector Machines ... 485
 15.1 Risk Minimization .. 488
 15.1.1 Empirical Risk Minimization 492
 15.1.2 Capacity and Bounds on Risk 493
 15.1.3 Structural Risk Minimization 493
 15.2 The Two-Class Problem .. 494
 15.2.1 Dual Representation 497
 15.2.2 Soft Margin Classification 500
 15.3 Kernel Mapping .. 503
 15.3.1 The Kernel Trick 504
 15.4 Positive Semi-Definite Kernels 506
 15.4.1 Linear Kernel 506
 15.4.2 Polynomial Kernel 506
 15.4.3 Gaussian Radial Basis Function (GRBF) Kernel 507
 15.4.4 Cosine Kernel 508
 15.4.5 Fisher Kernel 508
 15.4.6 GLDS Kernel 509
 15.4.7 GMM-UBM Mean Interval (GUMI) Kernel 510
 15.5 Non Positive Semi-Definite Kernels 511
 15.5.1 Jeffreys Divergence Kernel 511
 15.5.2 Fuzzy Hyperbolic Tangent (tanh) Kernel 512
 15.5.3 Neural Network Kernel 513
 15.6 Kernel Normalization .. 513
 15.7 Kernel Principal Component Analysis (Kernel PCA) 514
 15.8 Nuisance Attribute Projection (NAP) 516
 15.9 The multiclass (Γ-Class) Problem 518
References ... 519

Part II Advanced Theory

16 Speaker Modeling ... 525
 16.1 Individual Speaker Modeling 526
 16.2 Background Models and Cohorts 527
 16.2.1 Background Models 528
 16.2.2 Cohorts ... 529
 16.3 Pooling of Data and Speaker Independent Models 529
 16.4 Speaker Adaptation .. 530
 16.4.1 Factor Analysis (FA) 530
 16.4.2 Joint Factor Analysis (JFA) 531
 16.4.3 Total Factors (Total Variability) 532
 16.5 Audio Segmentation .. 532
 16.6 Model Quality Assessment 534
 16.6.1 Enrollment Utterance Quality Control 534
 16.6.2 Speaker Menagerie 536
References ... 538
17 Speaker Recognition

17.1 The Enrollment Task ... 543
17.2 The Verification Task ... 544
 17.2.1 Text-Dependent ... 546
 17.2.2 Text-Prompted ... 546
 17.2.3 Knowledge-Based ... 548
17.3 The Identification Task ... 548
 17.3.1 Closed-Set Identification 548
 17.3.2 Open-Set Identification 549
17.4 Speaker Segmentation ... 549
17.5 Speaker and Event Classification 550
 17.5.1 Gender and Age Classification (Identification) 551
 17.5.2 Audio Classification .. 553
 17.5.3 Multiple Codebooks .. 553
 17.5.4 Farfield Speaker Recognition 553
 17.5.5 Whispering Speaker Recognition 554
17.6 Speaker Diarization .. 554
 17.6.1 Speaker Position and Orientation 555

References .. 555

18 Signal Enhancement and Compensation

18.1 Silence Detection, Voice Activity Detection (VAD) 561
18.2 Audio Volume Estimation .. 564
18.3 Echo Cancellation .. 564
18.4 Spectral Filtering and Cepstral Lifting 565
 18.4.1 Cepstral Mean Normalization (Subtraction) – CMN (CMS) 567
 18.4.2 Cepstral Mean and Variance Normalization (CMVN) 569
 18.4.3 Cepstral Histogram Normalization (Histogram Equalization) 570
 18.4.4 RelAtive SpecTrAl (RASTA) Filtering 571
 18.4.5 Other Lifters .. 571
 18.4.6 Vocal Tract Length Normalization (VTLN) 573
 18.4.7 Other Normalization Techniques 576
 18.4.8 Steady Tone Removal (Narrowband Noise Reduction) 579
 18.4.9 Adaptive Wiener Filtering 580
18.5 Speaker Model Normalization 581
 18.5.1 Z-Norm ... 581
 18.5.2 T-Norm (Test Norm) .. 582
 18.5.3 H-Norm ... 582
 18.5.4 HT-Norm ... 582
 18.5.5 AT-Norm ... 582
 18.5.6 C-Norm ... 582
 18.5.7 D-Norm ... 583
 18.5.8 F-Norm (F-Ratio Normalization) 583
 18.5.9 Group-Specific Normalization 583
Part III Practice

19 Evaluation and Representation of Results 589
 19.1 Verification Results .. 589
 19.1.1 Equal-Error Rate .. 589
 19.1.2 Half Total Error Rate 590
 19.1.3 Receiver Operating Characteristic (ROC) Curve 590
 19.1.4 Detection Error Trade-Off (DET) Curve 592
 19.1.5 Detection Cost Function (DCF) 593
 19.2 Identification Results .. 593
References .. 594

20 Time Lapse Effects (Case Study) 595
 20.1 The Audio Data .. 598
 20.2 Baseline Speaker Recognition 598
References .. 600

21 Adaptation over Time (Case Study) 601
 21.1 Data Augmentation .. 601
 21.2 Maximum A Posteriori (MAP) Adaptation 603
 21.3 Eigenvoice Adaptation ... 605
 21.4 Minimum Classification Error (MCE) 605
 21.5 Linear Regression Techniques 606
 21.5.1 Maximum Likelihood Linear Regression (MLLR) 606
 21.6 Maximum a-Posteriori Linear Regression (MAPLR) 607
 21.6.1 Other Adaptation Techniques 607
 21.7 Practical Perspectives ... 607
References .. 608

22 Overall Design .. 611
 22.1 Choosing the Model ... 611
 22.1.1 Phonetic Speaker Recognition 612
 22.2 Choosing an Adaptation Technique 613
 22.3 Microphones .. 613
 22.4 Channel Mismatch ... 615
 22.5 Voice Over Internet Protocol (VoIP) 615
 22.6 Public Databases .. 616
 22.6.1 NIST .. 616
 22.6.2 Linguistic Data Consortium (LDC) 616
 22.6.3 European Language Resources Association (ELRA) 619
 22.7 High Level Information ... 620
 22.7.1 Choosing Basic Segments 622
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.6</td>
<td>Fourier Series Expansion</td>
<td>708</td>
</tr>
<tr>
<td>24.6.1</td>
<td>Convergence of the Fourier Series</td>
<td>713</td>
</tr>
<tr>
<td>24.6.2</td>
<td>Parseval’s Theorem</td>
<td>714</td>
</tr>
<tr>
<td>24.7</td>
<td>Wavelet Series Expansion</td>
<td>716</td>
</tr>
<tr>
<td>24.8</td>
<td>The Laplace Transform</td>
<td>717</td>
</tr>
<tr>
<td>24.8.1</td>
<td>Inversion</td>
<td>720</td>
</tr>
<tr>
<td>24.8.2</td>
<td>Some Useful Transforms</td>
<td>721</td>
</tr>
<tr>
<td>24.9</td>
<td>Complex Fourier Transform (Fourier Integral Transform)</td>
<td>722</td>
</tr>
<tr>
<td>24.9.1</td>
<td>Translation</td>
<td>724</td>
</tr>
<tr>
<td>24.9.2</td>
<td>Scaling</td>
<td>724</td>
</tr>
<tr>
<td>24.9.3</td>
<td>Symmetry Table</td>
<td>724</td>
</tr>
<tr>
<td>24.9.4</td>
<td>Time and Complex Scaling and Shifting</td>
<td>725</td>
</tr>
<tr>
<td>24.9.5</td>
<td>Convolution</td>
<td>725</td>
</tr>
<tr>
<td>24.9.6</td>
<td>Correlation</td>
<td>726</td>
</tr>
<tr>
<td>24.9.7</td>
<td>Parseval’s Theorem</td>
<td>726</td>
</tr>
<tr>
<td>24.9.8</td>
<td>Power Spectral Density</td>
<td>728</td>
</tr>
<tr>
<td>24.9.9</td>
<td>One-Sided Power Spectral Density</td>
<td>728</td>
</tr>
<tr>
<td>24.9.10</td>
<td>PSD-per-unit-time</td>
<td>729</td>
</tr>
<tr>
<td>24.9.11</td>
<td>Wiener-Khintchine Theorem</td>
<td>729</td>
</tr>
<tr>
<td>24.10</td>
<td>Discrete Fourier Transform (DFT)</td>
<td>731</td>
</tr>
<tr>
<td>24.10.1</td>
<td>Inverse Discrete Fourier Transform (IDFT)</td>
<td>732</td>
</tr>
<tr>
<td>24.10.2</td>
<td>Periodicity</td>
<td>734</td>
</tr>
<tr>
<td>24.10.3</td>
<td>Plancherel and Parseval’s Theorem</td>
<td>734</td>
</tr>
<tr>
<td>24.10.4</td>
<td>Power Spectral Density (PSD) Estimation</td>
<td>735</td>
</tr>
<tr>
<td>24.10.5</td>
<td>Fast Fourier Transform (FFT)</td>
<td>736</td>
</tr>
<tr>
<td>24.11</td>
<td>Discrete-Time Fourier Transform (DTFT)</td>
<td>738</td>
</tr>
<tr>
<td>24.11.1</td>
<td>Power Spectral Density (PSD) Estimation</td>
<td>739</td>
</tr>
<tr>
<td>24.12</td>
<td>Complex Short-Time Fourier Transform (STFT)</td>
<td>740</td>
</tr>
<tr>
<td>24.12.1</td>
<td>Discrete-Time Short-Time Fourier Transform DTSTFT</td>
<td>744</td>
</tr>
<tr>
<td>24.12.2</td>
<td>Discrete Short-Time Fourier Transform DSTFT</td>
<td>746</td>
</tr>
<tr>
<td>24.13</td>
<td>Discrete Cosine Transform (DCT)</td>
<td>748</td>
</tr>
<tr>
<td>24.13.1</td>
<td>Efficient DCT Computation</td>
<td>749</td>
</tr>
<tr>
<td>24.14</td>
<td>The z-Transform</td>
<td>750</td>
</tr>
<tr>
<td>24.14.1</td>
<td>Translation</td>
<td>756</td>
</tr>
<tr>
<td>24.14.2</td>
<td>Scaling</td>
<td>756</td>
</tr>
<tr>
<td>24.14.3</td>
<td>Shifting – Time Lag</td>
<td>757</td>
</tr>
<tr>
<td>24.14.4</td>
<td>Shifting – Time Lead</td>
<td>757</td>
</tr>
<tr>
<td>24.14.5</td>
<td>Complex Translation</td>
<td>757</td>
</tr>
<tr>
<td>24.14.6</td>
<td>Initial Value Theorem</td>
<td>758</td>
</tr>
<tr>
<td>24.14.7</td>
<td>Final Value Theorem</td>
<td>758</td>
</tr>
<tr>
<td>24.14.8</td>
<td>Real Convolution Theorem</td>
<td>759</td>
</tr>
<tr>
<td>24.14.9</td>
<td>Inversion</td>
<td>760</td>
</tr>
<tr>
<td>24.15</td>
<td>Cepstrum</td>
<td>762</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>769</td>
</tr>
</tbody>
</table>
25 Nonlinear Optimization

25.1 Gradient-Based Optimization 775
 25.1.1 The Steepest Descent Technique 775
 25.1.2 Newton’s Minimization Technique 777
 25.1.3 Quasi-Newton or Large Step Gradient Techniques 779
 25.1.4 Conjugate Gradient Methods 793

25.2 Gradient-Free Optimization 803
 25.2.1 Search Methods .. 804
 25.2.2 Gradient-Free Conjugate Direction Methods 804

25.3 The Line Search Sub-Problem 809

25.4 Practical Considerations 810
 25.4.1 Large-Scale Optimization 810
 25.4.2 Numerical Stability 813
 25.4.3 Nonsmooth Optimization 814

25.5 Constrained Optimization 814
 25.5.1 The Lagrangian and Lagrange Multipliers 817
 25.5.2 Duality .. 831

25.6 Global Convergence ... 835

References .. 836

26 Standards

26.1 Standard Audio Formats ... 842
 26.1.1 Linear PCM (Uniform PCM) 842
 26.1.2 µ-Law PCM (PCMU) .. 843
 26.1.3 A-Law (PCMA) ... 843
 26.1.4 MP3 .. 843
 26.1.5 HE-AAC .. 844
 26.1.6 OGG Vorbis .. 844
 26.1.7 ADPCM (G.726) ... 845
 26.1.8 GSM ... 845
 26.1.9 CELP .. 847
 26.1.10 DTMF ... 848
 26.1.11 Others Audio Formats 848

26.2 Standard Audio Encapsulation Formats 849
 26.2.1 WAV ... 849
 26.2.2 SPHERE .. 850
 26.2.3 Standard Audio Format Encapsulation (SAFE) 850

26.3 APIs and Protocols .. 854
 26.3.1 SVAPI .. 855
 26.3.2 BioAPI .. 855
 26.3.3 VoiceXML ... 856
 26.3.4 MRCP .. 857
 26.3.5 Real-time Transport Protocol (RTP) 858
 26.3.6 Extensible MultiModal Annotation (EMMA) 858

References .. 859
Fundamentals of Speaker Recognition
Beigi, H.
2011, LXI, 942 p., Hardcover