Introduction

This brief chapter, apart from providing two introductory examples on fitting regression models, outlines some basic features of R, including its help facilities and the development model. For the interested reader, the final section briefly outlines the history of R.

1.1 An Introductory R Session

For a first impression of R’s “look and feel”, we provide an introductory R session in which we briefly analyze two data sets. This should serve as an illustration of how basic tasks can be performed and how the operations employed are generalized and modified for more advanced applications. We realize that not every detail will be fully transparent at this stage, but these examples should help to give a first impression of R’s functionality and syntax. Explanations regarding all technical details are deferred to subsequent chapters, where more complete analyses are provided.

Example 1: The demand for economics journals

We begin with a small data set taken from Stock and Watson (2007) that provides information on the number of library subscriptions to economic journals in the United States of America in the year 2000. The data set, originally collected by Bergstrom (2001), is available in package AER under the name Journals. It can be loaded via

R> data("Journals", package = "AER")

The commands

R> dim(Journals)
[1] 180 10

R> names(Journals)
reveal that Journals is a data set with 180 observations (the journals) on 10 variables, including the number of library subscriptions (subs), the price, the number of citations, and a qualitative variable indicating whether the journal is published by a society or not.

Here, we are interested in the relation between the demand for economics journals and their price. A suitable measure of the price for scientific journals is the price per citation. A scatterplot (in logarithms), obtained via

\[R > \text{plot(log(subs) ~ log(price/citations), data = Journals)} \]

and given in Figure 1.1, clearly shows that the number of subscriptions is decreasing with price.

The corresponding linear regression model can be easily fitted by ordinary least squares (OLS) using the function \texttt{lm()} (for linear model) and the same syntax,

\[R > j _lm \leftarrow \text{lm(log(subs) ~ log(price/citations), data = Journals)}\]
\[R > \text{abline(j _lm)} \]

The \texttt{abline()} command adds the least-squares line to the existing scatterplot; see Figure 1.1.

A detailed summary of the fitted model \texttt{j _lm} can be obtained via

\[R > \text{summary(j _lm)} \]

\texttt{lm(formula = log(subs) ~ log(price/citations), data = Journals)}

\texttt{Residuals:}

\[
\begin{array}{ccccc}
\text{Min} & \text{1Q} & \text{Median} & \text{3Q} & \text{Max} \\
-2.7248 & -0.5361 & 0.0372 & 0.4662 & 1.8481 \\
\end{array}
\]

\texttt{Coefficients:}

\[
\begin{array}{cccc}
\text{Estimate} & \text{Std. Error} & \text{t value} & \text{Pr(>|t|)} \\
(Intercept) & 4.7662 & 0.0559 & 85.2 & <2e-16 \\
\log(price/citations) & -0.5331 & 0.0356 & -15.0 & <2e-16 \\
\end{array}
\]

\texttt{Residual standard error: 0.75 on 178 degrees of freedom}

\texttt{Multiple R-squared: 0.557, Adjusted R-squared: 0.555}

\texttt{F-statistic: 224 on 1 and 178 DF, p-value: <2e-16}

Specifically, this provides the usual summary of the coefficients (with estimates, standard errors, test statistics, and \textit{p} values) as well as the associated \(R^2 \), along with further information. For the journals regression, the estimated
elasticity of the demand with respect to the price per citation is -0.5331, which is significantly different from 0 at all conventional levels. The $R^2 = 0.557$ of the model is quite satisfactory for a cross-section regression.

A more detailed analysis with further information on the R commands employed is provided in Chapter 3.

Example 2: Determinants of wages

In the preceding example, we showed how to fit a simple linear regression model to get a flavor of R’s look and feel. The commands for carrying out the analysis often read almost like talking plain English to the system. For performing more complex tasks, the commands become more technical as well—however, the basic ideas remain the same. Hence, all readers should be able to follow the analysis and recognize many of the structures from the previous example even if not every detail of the functions is explained here. Again, the purpose is to provide a motivating example illustrating how easily some more advanced tasks can be performed in R. More details, both on the commands and the data, are provided in subsequent chapters.

The application considered here is the estimation of a wage equation in semi-logarithmic form based on data taken from Berndt (1991). They represent a random subsample of cross-section data originating from the May 1985...
Current Population Survey, comprising 533 observations. After loading the data set CPS1985 from the package AER, we first rename it for convenience:

```r
R> data("CPS1985", package = "AER")
R> cps <- CPS1985
```

For `cps`, a wage equation is estimated with `log(wage)` as the dependent variable and `education` and `experience` (both in number of years) as regressors. For `experience`, a quadratic term is included as well. First, we estimate a multiple linear regression model by OLS (again via `lm()`). Then, quantile regressions are fitted using the function `rq()` from the package `quantreg`. In a sense, quantile regression is a refinement of the standard linear regression model in that it provides a more complete view of the entire conditional distribution (by way of choosing selected quantiles), not just the conditional mean. However, our main reason for selecting this technique is that it illustrates that R’s fitting functions for regression models typically possess virtually identical syntax. In fact, in the case of quantile regression models, all we need to specify in addition to the already familiar formula and data arguments is `tau`, the set of quantiles that are to be modeled; in our case, this argument will be set to `0.2, 0.35, 0.5, 0.65, 0.8`.

After loading the `quantreg` package, both models can thus be fitted as easily as

```r
R> library("quantreg")
R> cps_lm <- lm(log(wage) ~ experience + I(experience^2) +
+ education, data = cps)
R> cps_rq <- rq(log(wage) ~ experience + I(experience^2) +
+ education, data = cps, tau = seq(0.2, 0.8, by = 0.15))
```

These fitted models could now be assessed numerically, typically with a `summary()` as the starting point, and we will do so in a more detailed analysis in Chapter 4. Here, we focus on graphical assessment of both models, in particular concerning the relationship between wages and years of experience. Therefore, we compute predictions from both models for a new data set `cps2`, where `education` is held constant at its mean and `experience` varies over the range of the original variable:

```r
R> cps2 <- data.frame(education = mean(cps$education),
+ experience = min(cps$experience):max(cps$experience))
R> cps2 <- cbind(cps2, predict(cps_lm, newdata = cps2,
+ interval = "prediction"))
R> cps2 <- cbind(cps2,
+ predict(cps_rq, newdata = cps2, type = ""))
```

For both models, predictions are computed using the respective `predict()` methods and binding the results as new columns to `cps2`. First, we visualize the results of the quantile regressions in a scatterplot of `log(wage)` against experience, adding the regression lines for all quantiles (at the mean level of education):
Fig. 1.2. Scatterplot of log-wage versus experience, with quantile regression fits for varying quantiles.

```
R> plot(log(wage) ~ experience, data = cps)
R> for(i in 6:10) lines(cps2[,i] ~ experience,
+     data = cps2, col = "red")
```

To keep the code compact, all regression lines are added in a `for()` loop. The resulting plot is displayed in Figure 1.2, showing that wages are highest for individuals with around 30 years of experience. The curvature of the regression lines is more marked at lower quartiles, whereas the relationship is much flatter for higher quartiles. This can also be seen in Figure 1.3, obtained via

```
R> plot(summary(cps_rq))
```

which depicts the changes in the regression coefficients over varying quantiles along with the least-squares estimates (both together with 90% confidence intervals). This shows that both `experience` coefficients are eventually decreasing in absolute size (note that the coefficient on the quadratic term is negative) with increasing quantile and that consequently the curve is flatter for higher quantiles. The intercept also increases, while the influence of `education` does not vary as much with the quantile level.

Although the size of the sample in this illustration is still quite modest by current standards, with 533 observations many observations are hidden due to overplotting in scatterplots such as Figure 1.2. To avoid this problem, and to further illustrate some of R’s graphics facilities, kernel density estimates will
Fig. 1.3. Coefficients of quantile regression for varying quantiles, with confidence bands (gray) and least-squares estimate (red).

be used: high- versus low-density regions in the bivariate distribution can be identified by a bivariate kernel density estimate and brought out graphically in a so-called heatmap. In R, the bivariate kernel density estimate is provided by \texttt{bkde2D()} in the package \texttt{KernSmooth}:

\begin{verbatim}
R> library("KernSmooth")
R> cps_bkde <- bkde2D(cbind(cps$experience, log(cps$wage)),
+ bandwidth = c(3.5, 0.5), gridsize = c(200, 200))
\end{verbatim}

As \texttt{bkde2D()} does not have a formula interface (in contrast to \texttt{lm()} or \texttt{rq()}), we extract the relevant columns from the \texttt{cps} data set and select suitable bandwidths and grid sizes. The resulting 200×200 matrix of density estimates
1.1 An Introductory R Session

Fig. 1.4. Bivariate kernel density heatmap of log-wage by experience, with least-squares fit and prediction interval.

can be visualized in a heatmap using gray levels coding the density values. R provides `image()` (or `contour()`) to produce such displays, which can be applied to `cps_bkde` as follows.

```r
R> image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat,
+        col = rev(gray.colors(10, gamma = 1)),
+        xlab = "experience", ylab = "log(wage)")
R> box()
R> lines(fit ~ experience, data = cps2)
R> lines(lwr ~ experience, data = cps2, lty = 2)
R> lines(upr ~ experience, data = cps2, lty = 2)
```

After drawing the heatmap itself, we add the regression line for the linear model fit along with prediction intervals (see Figure 1.4). Compared with the scatterplot in Figure 1.2, this brings out more clearly the empirical relationship between log(wage) and experience.

This concludes our introductory R session. More details on the data sets, models, and R functions are provided in the following chapters.
1.2 Getting Started

The R system for statistical computing and graphics (R Development Core Team 2008b, http://www.R-project.org/) is an open-source software project, released under the terms of the GNU General Public License (GPL), Version 2. (Readers unfamiliar with open-source software may want to visit http://www.gnu.org/.) Its source code as well as several binary versions can be obtained, at no cost, from the Comprehensive R Archive Network (CRAN; see http://CRAN.R-project.org/mirrors.html to find its nearest mirror site). Binary versions are provided for 32-bit versions of Microsoft Windows, various flavors of Linux (including Debian, Red Hat, SUSE, and Ubuntu) and Mac OS X.

Installation

Installation of binary versions is fairly straightforward: just go to CRAN, pick the version corresponding to your operating system, and follow the instructions provided in the corresponding readme file. For Microsoft Windows, this amounts to downloading and running the setup executable (.exe file), which takes the user through a standard setup manager. For Mac OS X, separate disk image .dmg files are available for the base system as well as for a GUI developed for this platform. For various Linux flavors, there are prepackaged binaries (as .rpm or .deb files) that can be installed with the usual packaging tools on the respective platforms. Additionally, versions of R are also distributed in many of the standard Linux repositories, although these are not necessarily as quickly updated to new R versions as CRAN is.

For every system, in particular those for which a binary package does not exist, there is of course also the option to compile R from the source. On some platforms, notably Microsoft Windows, this can be a bit cumbersome because the required compilers are typically not part of a standard installation. On other platforms, such as Unix or Linux, this often just amounts to the usual configure/make/install steps. See R Development Core Team (2008d) for detailed information on installation and administration of R.

Packages

As will be discussed in greater detail below, base R is extended by means of packages, some of which are part of the default installation. Packages are stored in one or more libraries (i.e., collections of packages) on the system and can be loaded using the command library(). Typing library() without any arguments returns a list of all currently installed packages in all libraries. In the R world, some of these are referred to as “base” packages (contained in the R sources); others are “recommended” packages (included in every binary distribution). A large number of further packages, known as “contributed” packages (currently more than 1,400), are available from the CRAN servers (see http://CRAN.R-project.org/web/packages/), and some of these will
be required as we proceed. Notably, the package accompanying this book, named **AER**, is needed. On a computer connected to the Internet, its installation is as simple as typing

```r
R> install.packages("AER")
```

at the prompt. This installation process works on all operating systems; in addition, Windows users may install packages by using the “Install packages from CRAN” and Mac users by using the “Package installer” menu option and then choosing the packages to be installed from a list. Depending on the installation, in particular on the settings of the library paths, `install.packages()` by default might try to install a package in a directory where the user has no writing permission. In such a case, one needs to specify the `lib` argument or set the library paths appropriately (see R Development Core Team 2008d, and `?library` for more information). Incidentally, installing **AER** will download several further packages on which **AER** depends. It is not uncommon for packages to depend on other packages; if this is the case, the package “knows” about it and ensures that all the functions it depends upon will become available during the installation process.

To use functions or data sets from a package, the package must be loaded. The command is, for our package **AER**,

```r
R> library("AER")
```

From now on, we assume that **AER** is always loaded. It will be necessary to install and load further packages in later chapters, and it will always be indicated what they are.

In view of the rapidly increasing number of contributed packages, it has proven to be helpful to maintain a number of “CRAN task views” that provide an overview of packages for certain tasks. Current task views include econometrics, finance, social sciences, and Bayesian statistics. See http://CRAN.R-project.org/web/views/ for further details.

1.3 Working with R

There is an important difference in philosophy between **R** and most other econometrics packages. With many packages, an analysis will lead to a large amount of output containing information on estimation, model diagnostics, specification tests, etc. In **R**, an analysis is normally broken down into a series of steps. Intermediate results are stored in objects, with minimal output at each step (often none). Instead, the objects are further manipulated to obtain the information required.

In fact, the fundamental design principle underlying **R** (and **S**) is “everything is an object”. Hence, not only vectors and matrices are objects that can be passed to and returned by functions, but also functions themselves, and even function calls. This enables computations on the language and can considerably facilitate programming tasks, as we will illustrate in Chapter 7.
10 1 Introduction

Handling objects

To see what objects are currently defined, the function `objects()` (or equivalently `ls()`) can be used. By default, it lists all objects in the global environment (i.e., the user’s workspace):

```r
R> objects()
[1] "CPS1985"  "Journals"  "cps"    "cps2"    "cps_bkde"
[6] "cps_lm"   "cps_rq"    "i"      "j_lm"
```

which returns a character vector of length 9 telling us that there are currently nine objects, resulting from the introductory session.

However, this cannot be the complete list of available objects, given that some objects must already exist prior to the execution of any commands, among them the function `objects()` that we just called. The reason is that the search list, which can be queried by

```r
R> search()
[1] ".GlobalEnv"   "package:KernSmooth"
[7] "package:splines" "package:strucchange"
[9] "package:sandwich" "package:lmtest"
[17] "package:datasets" "package:methods"
[19] "Autoloads"     "package:base"
```

comprises not only the global environment ".GlobalEnv" (always at the first position) but also several attached packages, including the `base` package at its end. Calling `objects("package:base")` will show the names of more than a thousand objects defined in `base`, including the function `objects()` itself.

Objects can easily be created by assigning a value to a name using the assignment operator `<-`. For illustration, we create a vector `x` in which the number 2 is stored:

```r
R> x <- 2
R> objects()
```

```r
[1] "CPS1985"  "Journals"  "cps"    "cps2"    "cps_bkde"
[6] "cps_lm"   "cps_rq"    "i"      "j_lm"    "x"
```

`x` is now available in our global environment and can be removed using the function `remove()` (or equivalently `rm()`):

```r
R> remove(x)
R> objects()
```
1.3 Working with R

Calling functions

If the name of an object is typed at the prompt, it will be printed. For a function, say `foo`, this means that the corresponding R source code is printed (try, for example, `objects`), whereas if it is called with parentheses, as in `foo()`, it is a function call. If there are no arguments to the function, or all arguments have defaults (as is the case with `objects()`), then `foo()` is a valid function call. Therefore, a pair of parentheses following the object name is employed throughout this book to signal that the object discussed is a function.

Functions often have more than one argument (in fact, there is no limit to the number of arguments to R functions). A function call may use the arguments in any order, provided the name of the argument is given. If names of arguments are not given, R assumes they appear in the order of the function definition. If an argument has a default, it may be left out in a function call. For example, the function `log()` has two arguments, `x` and `base`: the first, `x`, can be a scalar (actually also a vector), the logarithm of which is to be taken; the second, `base`, is the base with respect to which logarithms are computed.

Thus, the following four calls are all equivalent:

```r
R> log(16, 2)
R> log(x = 16, 2)
R> log(16, base = 2)
R> log(base = 2, x = 16)
```

Classes and generic functions

Every object has a class that can be queried using `class()`. Classes include "data.frame" (a list or array with a certain structure, the preferred format in which data should be held), "lm" for linear-model objects (returned when fitting a linear regression model by ordinary least squares; see Section 1.1 above), and "matrix" (which is what the name suggests). For each class, certain methods to so-called generic functions are available; typical examples include `summary()` and `plot()`. The result of these functions depends on the class of the object: when provided with a numerical vector, `summary()` returns basic summaries of an empirical distribution, such as the mean and the median; for a vector of categorical data, it returns a frequency table; and in the case of a linear-model object, the result is the standard regression output. Similarly, `plot()` returns pairs of scatterplots when provided with a data frame and returns basic diagnostic plots for a linear-model object.
12 1 Introduction

Quitting R

One exits R by using the q() function:

R> q()

R will then ask whether to save the workspace image. Answering n (no) will exit R without saving anything, whereas answering y (yes) will save all currently defined objects in a file .RData and the command history in a file .Rhistory, both in the working directory.

File management

To query the working directory, use getwd(), and to change it, setwd(). If an R session is started in a directory that has .RData and/or .Rhistory files, these will automatically be loaded. Saved workspaces from other directories can be loaded using the function load(). Analogously, R objects can be saved (in binary format) by save(). To query the files in a directory, dir() can be used.

1.4 Getting Help

R is well-documented software. Help on any function may be accessed using either ? or help(). Thus

R> ?options
R> help("options")

both open the help page for the command options(). At the bottom of a help page, there are typically practical examples of how to use that function. These can easily be executed with the example() function; e.g., example("options") or example("lm").

If the exact name of a command is not known, as will often be the case for beginners, the functions to use are help.search() and apropos(). help.search() returns help files with aliases or concepts or titles matching a “pattern” using fuzzy matching. Thus, if help on options settings is desired but the exact command name, here options(), is unknown, a search for objects containing the pattern “option” might be useful. help.search("option") will return a (long) list of commands, data frames, etc., containing this pattern, including an entry

options(base) Options Settings

providing the desired result. It says that there exists a command options() in the base package that provides options settings.

Alternatively, the function apropos() lists all functions whose names include the pattern entered. As an illustration,
R> apropos("help")

[1] "help" "help.search" "help.start"

provides a list with only three entries, including the desired command `help()`. Note that `help.search()` searches through all installed packages, whereas `apropos()` just examines the objects currently in the search list.

Vignettes

On a more advanced level, there are so-called vignettes. They are PDF files generated from integrated files containing both R code and documentation (in LaTeX format) and therefore typically contain commands that are directly executable, reproducing the analysis described. This book was written by using the tools that vignettes are based on. `vignette()` provides a list of vignettes in all attached packages. (The meaning of “attached” will be explained in Section 2.5.) As an example, `vignette("strucchange-intro", package = "strucchange")` opens the vignette accompanying the package `strucchange`. It is co-authored by the authors of this book and deals with testing, monitoring, and dating of structural changes in time series regressions. See Chapter 7 for further details on vignettes and related infrastructure.

Demos

There also exist “demos” for certain tasks. A demo is an interface to run some demonstration R scripts. Type `demo()` for a list of available topics. These include "graphics" and "lm.glm", the latter providing illustrations on linear and generalized linear models. For beginners, running `demo("graphics")` is highly recommended.

Manuals, FAQs, and publications

R also comes with a number of manuals:

- An Introduction to R
- R Data Import/Export
- R Language Definition
- Writing R Extensions
- R Installation and Administration
- R Internals

Furthermore, there are several collections of frequently asked questions (FAQs) at http://CRAN.R-project.org/faqs.html that provide answers to general questions about R and also about platform-specific issues on Microsoft Windows and Mac OS X.

Moreover, there is an online newsletter named *R News*, launched in 2001. It is currently published about three times per year and features, among other
things, recent developments in R (such as changes in the language or new add-on packages), a “programmer’s niche”, and examples analyzing data with R. See http://CRAN.R-project.org/doc/Rnews/ for further information.

For a growing number of R packages, there exist corresponding publications in the Journal of Statistical Software; see http://www.jstatsoft.org/. This is an open-access journal that publishes articles and code snippets (as well as book and software reviews) on the subject of statistical software and algorithms. A special volume on Econometrics in R is currently in preparation.

Finally, there is a rapidly growing list of books on R, or on statistics using R, at all levels, the most comprehensive perhaps being Venables and Ripley (2002). In addition, we refer the interested reader to Dalgaard (2002) for introductory statistics, to Murrell (2005) for R graphics, and to Faraway (2005) for linear regression.

1.5 The Development Model

One of R’s strengths and a key feature in its success is that it is highly extensible through packages that can provide extensions to everything available in the base system. This includes not only R code but also code in compiled languages (such as C, C++, or FORTRAN), data sets, demo files, test suites, vignettes, or further documentation. Therefore, every R user can easily become an R developer by submitting his or her packages to CRAN to share them with the R community. Hence packages can actively influence the direction in which (parts of) R will go in the future.

Unlike the CRAN packages, the base R system is maintained and developed only by the R core team, which releases major version updates (i.e., versions x.y.0) biannually (currently around April 1 and October 1). However, as R is an open-source system, all users are given read access to the master SVN repository—SVN stands for Subversion and is a version control system; see http://subversion.tigris.org/—and can thus check out the full source code of the development version of R.

In addition, there are several means of communication within the R user and developer community and between the users and the core development team. The two most important are various R mailing lists and, as described above, CRAN packages. The R project hosts several mailing lists, including R-help and R-devel. The former can be used to ask for help on using R, the latter for discussing issues related to the development of R or R packages. Furthermore, bugs can be reported and feature requests made. The posting guide at http://www.R-project.org/posting-guide.html discusses some good strategies for doing this effectively. In addition to these general mailing lists, there are lists for special interest groups (SIGs), among them at least one list that might be of interest to the reader: it is devoted to finance and (financial) econometrics and is called R-SIG-Finance.
1.6 A Brief History of R

As noted above, the R system for statistical computing and graphics (R Development Core Team 2008b, http://www.R-project.org/) is an open-source software project. The story begins at Bell Laboratories (of AT&T and now Alcatel-Lucent in New Jersey), with the S language, a system for data analysis developed by John Chambers, Rick Becker, and collaborators since the late 1970s. Landmarks of the development of S are a series of books, referred to by color in the S community, beginning with the “brown book” (Becker and Chambers 1984), which features “Old S”. The basic reference for “New S”, or S version 2, is Becker, Chambers, and Wilks (1988), the “blue book”. For S version 3 (first-generation object-oriented programming and statistical modeling), it is Chambers and Hastie (1992), the “white book”. The “green book” (Chambers 1998) documents S version 4. Based on the various S versions, Insightful Corporation (formerly MathSoft and still earlier Statistical Sciences) has provided a commercially enhanced and supported release of S, named S-PLUS, since 1987. At its core, this includes the original S implementation, which was first exclusively licensed and finally purchased in 2004. On March 23, 1999, the Association for Computing Machinery (ACM) named John Chambers as the recipient of its 1998 Software System Award for developing the S system, noting that his work “will forever alter the way people analyze, visualize, and manipulate data”.

R itself was initially developed by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand. An early version is described in an article by its inventors (Ihaka and Gentleman 1996). They designed the language to combine the strengths of two existing languages, S and Scheme (Steel and Sussman 1975). In the words of Ihaka and Gentleman (1996), “[t]he resulting language is very similar in appearance to S, but the underlying implementation and semantics are derived from Scheme”. The result was baptized R “in part to acknowledge the influence of S and in part to celebrate [their] own efforts”.

The R source code was first released under the GNU General Public License (GPL) in 1995. Since mid-1997, there has been the R Development Core Team, currently comprising 19 members, and their names are available upon typing contributors() in an R session. In 1998, the Comprehensive R Archive Network (CRAN; http://CRAN.R-project.org/) was established, which is a family of mirror sites around the world that store identical, up-to-date versions of code and documentation for R. The first official release, R version 1.0.0, dates to 2000-02-29. It implements the S3 standard as documented by Chambers and Hastie (1992). R version 2.0.0 was released in 2004, and the current version of the language, R 2.7.0, may be viewed as implementing S4 (Chambers 1998) plus numerous concepts that go beyond the various S standards.

The first publication on R in the econometrics literature appears to have been by Cribari-Neto and Zarkos (1999), a software review in the Journal
of Applied Econometrics entitled “R: Yet Another Econometric Programming Environment”. It describes R version 0.63.1, still a beta version. Three years later, in a further software review in the same journal, Racine and Hyndman (2002) focused on using R for teaching econometrics utilizing R 1.3.1. To the best of our knowledge, this book is the first general introduction to econometric computing with R.