Contents

Preface ... vii
Acknowledgements ... xi

1 Introduction ... 1
 1.1 Prognosis and Prediction in Medicine 1
 1.1.1 Prediction Models and Decision-Making 1
 1.2 Statistical Modelling for Prediction 2
 1.2.1 Model Uncertainty 3
 1.2.2 Sample Size ... 4
 1.3 Structure of the Book 5
 1.3.1 Part I: Prediction Models in Medicine 5
 1.3.2 Part II: Developing Valid Prediction Models 6
 1.3.3 Part III: Generalizability of Prediction Models 6
 1.3.4 Part IV: Applications 7
 1.3.5 Questions and Exercises 7

Part I Prediction Models in Medicine

2 Applications of Prediction Models 9
 2.1 Applications: Medical Practice and Research 11
 2.2 Prediction Models for Public Health 12
 2.2.1 Targeting of Preventive Interventions 12
 2.2.2 Example: Incidence of Breast Cancer 12
 2.3 Prediction Models for Clinical Practice 13
 2.3.1 Decision Support on Test Ordering 13
 2.3.2 Example: Predicting Renal Artery Stenosis 14
 2.3.3 Starting Treatment: the Treatment Threshold 15
 2.3.4 Example: Probability of Deep Venous Thrombosis 16
 2.3.5 Intensity of Treatment 16
 2.3.6 Example: Defining a Poor Prognosis Subgroup in Cancer 18
2.3.7 Cost-Effectiveness of Treatment 18
2.3.8 Delaying Treatment 19
2.3.9 Example: Spontaneous Pregnancy Chances 19
2.3.10 Surgical Decision-Making 21
2.3.11 Example: Replacement of Risky Heart Valves 21

2.4 Prediction Models for Medical Research 23
2.4.1 Inclusion and Stratification in an RCT 23
2.4.2 Example: Selection for TBI Trials 24
2.4.3 Covariate Adjustment in an RCT 25
2.4.4 Gain in Power by Covariate Adjustment 26
2.4.5 Example: Analysis of the GUSTO-III Trial 27
2.4.6 Prediction Models and Observational Studies 27
2.4.7 Propensity Scores 28
2.4.8 Example: Statin Treatment Effects 28
2.4.9 Provider Profiling 29
2.4.10 Example: Ranking Cardiac Outcome 29

2.5 Concluding Remarks 30

3 Study Design for Prediction Models 33
3.1 Study Design 33
3.2 Cohort Studies for Prognosis 33
3.2.1 Retrospective Designs 35
3.2.2 Example: Predicting Early Mortality in Oesophageal Cancer 35
3.2.3 Prospective Designs 35
3.2.4 Example: Predicting Long-Term Mortality in Oesophageal Cancer 36
3.2.5 Registry Data 36
3.2.6 Example: Surgical Mortality in Oesophageal Cancer 37
3.2.7 Nested Case–Control Studies 37
3.2.8 Example: Perioperative Mortality in Major Vascular Surgery 38

3.3 Studies for Diagnosis 38
3.3.1 Cross-Sectional Study Design and Multivariable Modelling 38
3.3.2 Example: Diagnosing Renal Artery Stenosis 38
3.3.3 Case–Control Studies 39
3.3.4 Example: Diagnosing Acute Appendicitis 39

3.4 Predictors and Outcome 39
3.4.1 Strength of Predictors 39
3.4.2 Categories of Predictors 40
3.4.3 Costs of Predictors 40
3.4.4 Determinants of Prognosis 41
3.4.5 Prognosis in Oncology 41
3.5 Reliability of Predictors

3.5.1 Observer Variability

3.5.2 Example: Histology in Barrett’s Oesophagus

3.5.3 Biological Variability

3.5.4 Regression Dilution Bias

3.5.5 Example: Simulation Study on Reliability of a Binary Predictor

3.5.6 Choice of Predictors

3.6 Outcome

3.6.1 Types of Outcome

3.6.2 Survival Endpoints

3.6.3 Example: Relative Survival in Cancer Registries

3.6.4 Composite End Points

3.6.5 Example: Mortality and Composite End Points in Cardiology

3.6.6 Choice of Prognostic Outcome

3.6.7 Diagnostic End Points

3.6.8 Example: PET Scans in Oesophageal Cancer

3.7 Phases of Biomarker Development

3.8 Statistical Power

3.8.1 Statistical Power to Identify Predictor Effects

3.8.2 Examples of Statistical Power Calculations

3.8.3 Statistical Power for Reliable Predictions

3.9 Concluding Remarks

4 Statistical Models for Prediction

4.1 Continuous Outcomes

4.1.1 Examples of Linear Regression

4.1.2 Economic Outcomes

4.1.3 Example: Prediction of Costs

4.1.4 Transforming the Outcome

4.1.5 Performance: Explained Variation

4.1.6 More Flexible Approaches

4.2 Binary Outcomes

4.2.1 R^2 in Logistic Regression Analysis

4.2.2 Calculation of R^2 on the Log Likelihood Scale

4.2.3 Models Related to Logistic Regression

4.2.4 Bayes Rule

4.2.5 Example: Calculations with Likelihood Ratios

4.2.6 Prediction with Naïve Bayes

4.2.7 Examples of Naïve Bayes

4.2.8 Calibration and Naïve Bayes

4.2.9 Logistic Regression and Bayes

4.2.10 More Flexible Approaches to Binary Outcomes
Contents

4.2.11 Classification and Regression Trees 67
4.2.12 Example: Mortality in Acute MI Patients 67
4.2.13 Advantages and Disadvantages of Tree Models 67
4.2.14 Trees as Special Cases of Logistic Regression Modelling .. 69
4.2.14 Other Methods for Binary Outcomes 70
4.2.15 Summary on Binary Outcomes 71
4.3 Categorical Outcomes .. 71
4.3.1 Polytomous Logistic Regression 72
4.3.2 Example: Histology of Residual Masses 72
4.3.3 Alternative Models .. 73
4.3.4 Comparison of Modelling Approaches 74
4.4 Ordinal Outcomes ... 74
4.4.1 Proportional Odds Logistic Regression 75
4.4.2 Alternative: Continuation Ratio Model 77
4.4.3 Alternative Models .. 73
4.4.4 Comparison of Modelling Approaches 74
4.5 Survival Outcomes ... 77
4.5.1 Cox Proportional Hazards Regression 77
4.5.2 Predicting with Cox .. 78
4.5.3 Proportionality Assumption 78
4.5.4 Kaplan–Meier Analysis 79
4.5.5 Example: NFI After Treatment of Leprosy 79
4.5.6 Parametric Survival ... 80
4.5.7 Example: Replacement of Risky Heart Valves 80
4.5.8 Summary on Survival Outcomes 81
4.6 Concluding Remarks ... 81
5 Overfitting and Optimism in Prediction Models 83
5.1 Overfitting and Optimism .. 83
5.1.1 Example: Surgical Mortality in Oesophagectomy 84
5.1.2 Variability within One Centre 84
5.1.3 Variability between Centres: Noise vs. True Heterogeneity .. 85
5.1.4 Predicting Mortality by Centre: Shrinkage 87
5.2 Overfitting in Regression Models 87
5.2.1 Model Uncertainty: Testimation 87
5.2.2 Other Biases ... 89
5.2.3 Overfitting by Parameter Uncertainty 90
5.2.4 Optimism in Model Performance 90
5.2.5 Optimism-Corrected Performance 92
5.3 Bootstrap Resampling ... 92
5.3.1 Applications of the Bootstrap 93
5.3.2 Bootstrapping for Regression Coefficients 93
5.3.3 Bootstrapping for Optimism Correction 94
5.3.4 Calculation of Optimism-Corrected Performance 95
8 Case Study on Dealing with Missing Values 139
8.1 Introduction ... 139
8.1.1 Aim .. 139
8.1.2 Patient Selection .. 140
8.1.3 Selection of Potential Predictors 140
8.1.4 Coding and Time Dependency of Predictors 141
8.2 Missing Values in the IMPACT Study 142
8.2.1 Missing Values in Outcome 142
8.2.2 Quantification of Missingness of Predictors 143
8.2.3 Patterns of Missingness 144
8.3 Imputation of Missing Predictor Values 147
8.3.1 Correlations Between Predictors 147
8.3.2 Imputation Model ... 147
8.3.3 Distributions of Imputed Values 149
8.4 Estimating Adjusted Effects 149
8.4.1 Adjusted Analysis for Complete Predictors: Age and Motor Score 151
8.4.2 Adjusted Analysis for Incomplete Predictors: Pupils 154
8.5 Multivariable Analyses ... 155
8.6 Concluding Remarks .. 155

9 Coding of Categorical and Continuous Predictors 159
9.1 Categorical Predictors ... 159
9.1.1 Examples of Categorical Coding 160
9.2 Continuous Predictors ... 161
9.2.1 Examples of Continuous Predictors 161
9.2.2 Categorization of Continuous Predictors 162
9.3 Non-Linear Functions for Continuous Predictors 163
9.3.1 Polynomials ... 164
9.3.2 Fractional Polynomials 164
9.3.3 Splines ... 165
9.3.4 Example: Functional Forms with RCS or FP 166
9.3.5 Extrapolation and Robustness 166
9.4 Outliers and Truncation .. 167
 9.4.1 Example: Glucose Values and Outcome of TBI 168
9.5 Interpretation of Effects of Continuous Predictors 170
 9.5.1 Example: Predictor Effects in TBI 171
9.6 Concluding Remarks ... 172
 9.6.1 Software .. 172

10 Restrictions on Candidate Predictors 175
 10.1 Selection Before Studying the Predictor–Outcome
 Relationship .. 175
 10.1.1 Selection Based on Subject Knowledge 175
 10.1.2 Example: Too Many Candidate Predictors 176
 10.1.3 Meta-Analysis for Candidate Predictors 176
 10.1.4 Example: Predictors in Testicular Cancer 176
 10.1.5 Selection Based on Distributions 177
 10.2 Combining Similar Variables 177
 10.2.1 Example: Coding of Comorbidity 178
 10.2.2 Assessing the Equal Weights Assumption 178
 10.2.3 Logical Weighting 179
 10.2.4 Statistical Combination 180
 10.3 Averaging Effects .. 180
 10.3.1 Example: Chlamydia Trachomatis Infection Risks 180
 10.3.2 Example: Acute Surgery Risk Relevant for
 Elective Patients? ... 180
 10.4 Case study: Family History for Prediction of a
 Genetic Mutation ... 181
 10.4.1 Clinical Background and Patient Data 181
 10.4.2 Similarity of Effects 182
 10.4.3 CRC and Adenoma in a Proband 184
 10.4.4 Age of CRC in Family History 185
 10.4.5 Full Prediction Model for Mutations 186
 10.5 Concluding Remarks .. 187

11 Selection of Main Effects ... 191
 11.1 Predictor Selection ... 191
 11.1.1 Reduction Before Modelling 191
 11.1.2 Reduction While Modelling 192
 11.1.3 Collinearity .. 192
 11.1.4 Parsimony ... 193
 11.1.5 Should Non-Significant Variables Be Removed? 193
 11.1.6 Summary Points ... 194
 11.2 Stepwise Selection .. 194
 11.2.1 Stepwise Selection Variants 194
 11.2.2 Stopping Rules in Stepwise Selection 195
Advantages of Stepwise Methods 196
Disadvantages of Stepwise Methods 197
 11.4.1 Instability of selection 197
 11.4.2 Biased Estimation of Coefficients 199
 11.4.3 Bias of Stepwise Selection and Events Per Variable 199
 11.4.4 Misspecification of Variability 201
 11.4.5 Exaggeration of P-Values 204
 11.4.6 Predictions of Worse Quality Than from a Full Model 204
Influence of Noise Variables 205
Univariate Analyses and Model Specification 206
 11.6.1 Pros and Cons of Univariate Pre-Selection 207
 11.6.2 Testing of Predictors within Domains 207
Modern Selection Methods 207
 11.7.1 Bootstrapping for Selection 208
 11.7.2 Bagging and Boosting 208
 11.7.3 Bayesian Model Averaging (BMA) 208
 11.7.4 Practical Advantages of BMA 209
 11.7.5 Shrinkage of Regression Coefficients to Zero 210
Concluding Remarks 210

Assumptions in Regression Models: Additivity and Linearity 213
 12.1 Additivity and Interaction Terms 213
 12.1.1 Potential Interaction Terms to Consider 214
 12.1.2 Interactions with Treatment 214
 12.1.3 Other Potential Interactions 215
 12.1.4 Example: Time and Survival After Valve Replacement 216
 12.2 Selection, Estimation and Performance with Interaction Terms 216
 12.2.1 Example: Age Interactions in GUSTO-I 217
 12.2.2 Estimation of Interaction Terms 217
 12.2.3 Better Prediction with Interaction Terms? 219
 12.2.4 Summary Points 220
 12.3 Non-linearity in Multivariable Analysis 220
 12.3.1 Multivariable Restricted Cubic Splines (RCS) 220
 12.3.2 Multivariable Fractional Polynomials (FP) 221
 12.3.3 Multivariable Splines in GAM 222
 12.4 Example: Non-Linearity in Testicular Cancer Case Study 222
 12.4.1 Details of Multivariable FP and GAM Analyses 224
 12.4.2 GAM in Univariate and Multivariable Analysis 224
 12.4.3 Predictive Performance 226
 12.4.4 R code for Non-Linear Modelling 227
 12.5 Concluding Remarks 227
 12.5.1 Recommendations 228
13 Modern Estimation Methods

13.1 Predictions from Regression and Other Models

13.2 Shrinkage

13.2.1 Uniform Shrinkage

13.2.2 Uniform Shrinkage in GUSTO-I

13.3 Penalized Estimation

13.3.1 Penalized Maximum Likelihood Estimation

13.3.2 Penalized ML in Sample

13.3.3 Shrinkage, Penalization, and Model Selection

13.4 Lasso

13.4.1 Estimation of Lasso Model

13.4.2 Lasso in GUSTO-I

13.4.3 Predictions after Shrinkage

13.4.4 Model Performance after Shrinkage

13.5 Concluding Remarks

14 Estimation with External Information

14.1 Combining Literature and Individual Patient Data

14.1.1 Adaptation Method 1

14.1.2 Adaptation Method 2

14.1.3 Estimation

14.1.4 Simulation Results

14.1.5 Performance of Adapted Model

14.1.6 Improving Calibration

14.2 Example: Mortality of Aneurysm Surgery

14.2.1 Meta-Analysis

14.2.2 Individual Patient Data Analysis

14.2.3 Adaptation Results

14.3 Alternative Approaches

14.3.1 Overall Calibration

14.3.2 Bayesian Methods: Using Data Priors to Regression Modelling

14.3.3 Example: Predicting Neonatal Death

14.3.4 Example: Mortality of Aneurysm Surgery

14.4 Concluding Remarks

15 Evaluation of Performance

15.1 Overall Performance Measures

15.1.1 Explained Variation: R^2

15.1.2 Brier Score

15.1.3 Example: Performance of Testicular Cancer Prediction Model

15.1.4 Overall Performance Measures in Survival
Part III Generalizability of Prediction Models

19 Patterns of External Validity .. 333

19.1 Determinants of External Validity 335
19.1.1 Case-Mix ... 335
19.1.2 Differences in Case-Mix 336
19.1.3 Differences in Regression Coefficients 336

19.2 Impact on Calibration, Discrimination, and Clinical
Usefulness .. 337
19.2.1 Simulation Set-Up ... 338
19.2.2 Performance Measures 339

19.3 Distribution of Predictors .. 340
19.3.1 More- or Less-Severe Case-Mix According to X 340
19.3.2 Example: Interpretation of Testicular Cancer
Validation .. 341
19.3.3 More or Less Heterogeneous Case-Mix
According to X .. 341
19.3.4 More- or Less-Severe Case-Mix According to Z 342
19.3.5 More or Less Heterogeneous Case-Mix
According to Z .. 344

19.4 Distribution of Observed Outcomes Y 344

19.5 Coefficients β .. 345
19.5.1 Coefficient of Linear Predictor < 1 345
19.5.2 Coefficients Different 346
19.5.3 R Code ... 346
19.5.4 Influence of Different Coefficients 347
19.5.5 Other Scenarios of Invalidity 348
19.5.6 Summary of Patterns of Invalidity 348

19.6 Reference Values for Performance 349
19.6.1 Calculation of Reference Values 349
19.6.2 R Code ... 350
19.6.3 Performance with Refitting 350
19.6.4 Examples: Testicular Cancer and TBI 351
19.7 Estimation of Performance ... 352
 19.7.1 Uncertainty in Validation of Performance 352
 19.7.2 Estimating Standard Errors in Validation Studies 354
 19.7.3 Summary Points .. 354
19.8 Design of External Validation Studies 355
 19.8.1 Power of External Validation Studies 355
 19.8.2 Required Sample Sizes for Validation Studies 356
 19.8.3 Summary Points .. 357
19.9 Concluding Remarks .. 358

20 Updating for a New Setting .. 361
 20.1 Updating the Intercept .. 361
 20.1.1 Simple Updating Methods 362
 20.1.2 Bayesian Updating ... 362
 20.2 Approaches to More-Extensive Updating 363
 20.2.1 A comparison of Eight Updating Methods 364
 20.3 Case Study: Validation and Updating in GUSTO-I 366
 20.3.1 Validity of TIMI-II Model for GUSTO-I 366
 20.3.2 Updating the TIMI-II Model for GUSTO-I 368
 20.3.3 Performance of Updated Models 369
 20.3.4 R Code for Updating Methods 370
 20.4 Shrinkage and Updating .. 371
 20.4.1 Example: Shrinkage towards Re-calibrated Values in
 GUSTO-I ... 371
 20.4.2 R code for Shrinkage and Penalization in Updating ... 372
 20.5 Sample Size and Updating Strategy 373
 20.5.1 Simulations of Sample Size, Shrinkage, and Updating
 Strategy ... 374
 20.6 Validation and Updating of Tree Models 376
 20.6.1 Example: Tree Modelling in Testicular Cancer 377
 20.7 Validation and Updating of Survival Models 378
 20.7.1 Case Study: Validation of a Simple Index for
 Non-Hodgkin’s Lymphoma ... 379
 20.7.2 Updating the Prognostic Index 380
 20.7.3 Re-calibration for Groups by Time Points 380
 20.7.4 Re-calibration with a Cox Regression Model 381
 20.7.5 Parametric Re-calibration 382
 20.7.6 Summary Points .. 384
 20.8 Continuous Updating .. 384
 20.8.1 A Continuous Updating Strategy 385
 20.8.2 Example: Continuous Updating in GUSTO-I 386
 20.9 Concluding Remarks .. 388
21 Updating for Multiple Settings

21.1 Differences Between Settings

21.1.1 Testing for Calibration-in-the Large

21.1.2 Illustration of Heterogeneity in GUSTO-I

21.1.3 Updating for Better Calibration-in-the Large

21.1.4 Empirical Bayes Estimates

21.1.5 Illustration of Updating in GUSTO-I

21.1.6 Testing and Updating of Predictor Effects

21.1.7 Heterogeneity of Predictor Effects in GUSTO-I

21.1.8 R Code for Random Effect Analyses

21.2 Provider Profiling

21.2.1 Indicators for Differences Between Centres

21.2.2 Ranking of Centres

21.2.3 Example: Provider Profiling in Stroke

21.2.4 Testing of Differences Between Centres

21.2.5 Estimation of Differences Between Centres

21.2.6 Uncertainty in Differences

21.2.7 Ranking of Centres

21.2.8 Essential R Code for Provider Profiling

21.2.9 Guidelines for Provider Profiling

21.3 Concluding Remarks

21.3.1 Bibliographic Notes

Part IV Applications

22 Prediction of a Binary Outcome: 30-Day Mortality After Acute Myocardial Infarction

22.1 GUSTO-I Study

22.1.1 Acute Myocardial Infarction

22.1.2 Treatment Results from GUSTO-I

22.1.3 Prognostic Modelling in GUSTO-I

22.2 General Considerations of Model Development

22.2.1 Research Question and Intended Application

22.2.2 Outcome and Predictors

22.2.3 Study Design and Analysis

22.3 Seven Modelling Steps in GUSTO-I

22.3.1 Data Inspection

22.3.2 Coding of Predictors

22.3.3 Model Specification

22.3.4 Model Estimation

22.3.5 Model Performance

22.3.6 Model Validation

22.3.7 Presentation
22.4 Validity 421
22.4.1 Internal Validity: Overfitting 421
22.4.2 External Validity: Generalizability 421
22.4.3 Summary Points 421
22.5 Translation into Clinical Practice 422
22.5.1 Score Chart for Choosing Thrombolytic Therapy 422
22.5.2 Predictions for Choosing Thrombolytic Therapy 423
22.5.3 Covariate Adjustment in GUSTO-I 424
22.6 Concluding Remarks 425

23 Case Study on Survival Analysis: Prediction
of Secondary Cardiovascular Events 427
23.1 Prognosis in the SMART Study 427
23.1.1 Patients in SMART 428
23.2 General Considerations in SMART 429
23.2.1 Research Question and Intended Application 429
23.2.2 Outcome and Predictors 429
23.2.3 Study Design and Analysis 432
23.3 Data Inspection Steps in the SMART Cohort 432
23.4 Coding of Predictors 435
23.4.1 Extreme Values 435
23.4.2 Transforming Continuous Predictors 436
23.4.2 Combining Predictors with Similar Effects 437
23.5 Model Specification 438
23.5.1 Selection 440
23.6 Model Estimation, Performance, Validation, and Presentation 440
23.6.1 Model Estimation 440
23.6.2 Model Performance 442
23.6.3 Model Validation: Stability 442
23.6.4 Model Validation: Optimism 444
23.6.5 Model Presentation 444
23.7 Concluding Remarks 444

24 Lessons from Case Studies 447
24.1 Sample Size 447
24.1.1 Example: Sample Size and Number of Predictors 447
24.1.2 Number of Predictors 448
24.1.3 Potential Solutions 449
24.2 Validation 450
24.2.1 Examples of Internal and External Validation 450
24.3 Subject Matter Knowledge 451
24.4 Data Sets 452
24.4.1 GUSTO-I Prediction Models 453
24.4.2 Modern Learning Methods in GUSTO-I 453
24.4.3 Modelling Strategies in Small Data Sets from GUSTO-I .. 453
24.4.4 SMART Case Study .. 453
24.4.5 Testicular Cancer Case Study ... 455
24.4.6 Abdominal Aortic Aneurysm Case Study 455
24.4.7 Traumatic Brain Injury Data Set 459
24.5 Concluding Remarks .. 459

References .. 463
Index .. 487
Clinical Prediction Models
A Practical Approach to Development, Validation, and Updating
Steyerberg, E.
2009, XXVIII, 500 p., Hardcover
ISBN: 978-0-387-77243-1