Contents

Preface ... vii
Acknowledgements .. xi

1 Introduction ... 1
1.1 Prognosis and Prediction in Medicine 1
1.1.1 Prediction Models and Decision-Making 1
1.2 Statistical Modelling for Prediction 2
1.2.1 Model Uncertainty .. 3
1.2.2 Sample Size .. 4
1.3 Structure of the Book ... 5
1.3.1 Part I: Prediction Models in Medicine 5
1.3.2 Part II: Developing Valid Prediction Models 6
1.3.3 Part III: Generalizability of Prediction Models 6
1.3.4 Part IV: Applications 7
1.3.5 Questions and Exercises 7

Part I Prediction Models in Medicine

2 Applications of Prediction Models 9
2.1 Applications: Medical Practice and Research 11
2.2 Prediction Models for Public Health 12
2.2.1 Targeting of Preventive Interventions 12
2.2.2 Example: Incidence of Breast Cancer 12
2.3 Prediction Models for Clinical Practice 13
2.3.1 Decision Support on Test Ordering 13
2.3.2 Example: Predicting Renal Artery Stenosis 14
2.3.3 Starting Treatment: the Treatment Threshold 15
2.3.4 Example: Probability of Deep Venous Thrombosis 16
2.3.5 Intensity of Treatment 16
2.3.6 Example: Defining a Poor Prognosis Subgroup in Cancer 18
2.3.7 Cost-Effectiveness of Treatment
2.3.8 Delaying Treatment
2.3.9 Example: Spontaneous Pregnancy Chances
2.3.10 Surgical Decision-Making
2.3.11 Example: Replacement of Risky Heart Valves

2.4 Prediction Models for Medical Research
2.4.1 Inclusion and Stratification in an RCT
2.4.2 Example: Selection for TBI Trials
2.4.3 Covariate Adjustment in an RCT
2.4.4 Gain in Power by Covariate Adjustment
2.4.5 Example: Analysis of the GUSTO-III Trial
2.4.6 Prediction Models and Observational Studies
2.4.7 Propensity Scores
2.4.8 Example: Statin Treatment Effects
2.4.9 Provider Profiling
2.4.10 Example: Ranking Cardiac Outcome

2.5 Concluding Remarks

3 Study Design for Prediction Models
3.1 Study Design
3.2 Cohort Studies for Prognosis
3.2.1 Retrospective Designs
3.2.2 Example: Predicting Early Mortality in Oesophageal Cancer
3.2.3 Prospective Designs
3.2.4 Example: Predicting Long-Term Mortality in Oesophageal Cancer
3.2.5 Registry Data
3.2.6 Example: Surgical Mortality in Oesophageal Cancer
3.2.7 Nested Case–Control Studies
3.2.8 Example: Perioperative Mortality in Major Vascular Surgery

3.3 Studies for Diagnosis
3.3.1 Cross-Sectional Study Design and Multivariable Modelling
3.3.2 Example: Diagnosing Renal Artery Stenosis
3.3.3 Case–Control Studies
3.3.4 Example: Diagnosing Acute Appendicitis

3.4 Predictors and Outcome
3.4.1 Strength of Predictors
3.4.2 Categories of Predictors
3.4.3 Costs of Predictors
3.4.4 Determinants of Prognosis
3.4.5 Prognosis in Oncology
3.5 Reliability of Predictors .. 42
 3.5.1 Observer Variability .. 42
 3.5.2 Example: Histology in Barrett’s Oesophagus 42
 3.5.3 Biological Variability 43
 3.5.4 Regression Dilution Bias 43
 3.5.5 Example: Simulation Study on Reliability of a
 Binary Predictor ... 43
 3.5.6 Choice of Predictors 44

3.6 Outcome .. 44
 3.6.1 Types of Outcome ... 44
 3.6.2 Survival Endpoints .. 45
 3.6.3 Example: Relative Survival in Cancer Registries 45
 3.6.4 Composite End Points 46
 3.6.5 Example: Mortality and Composite End Points
 in Cardiology ... 46
 3.6.6 Choice of Prognostic Outcome 46
 3.6.7 Diagnostic End Points 47
 3.6.8 Example: PET Scans in Oesophageal Cancer 47

3.7 Phases of Biomarker Development 47

3.8 Statistical Power .. 48
 3.8.1 Statistical Power to Identify Predictor Effects 49
 3.8.2 Examples of Statistical Power Calculations 49
 3.8.3 Statistical Power for Reliable Predictions 50

3.9 Concluding Remarks .. 51

4 Statistical Models for Prediction 53
 4.1 Continuous Outcomes .. 53
 4.1.1 Examples of Linear Regression 54
 4.1.2 Economic Outcomes 54
 4.1.3 Example: Prediction of Costs 54
 4.1.4 Transforming the Outcome 54
 4.1.5 Performance: Explained Variation 55
 4.1.6 More Flexible Approaches 55
 4.2 Binary Outcomes .. 57
 4.2.1 R^2 in Logistic Regression Analysis 58
 4.2.2 Calculation of R^2 on the Log Likelihood Scale 58
 4.2.3 Models Related to Logistic Regression 60
 4.2.4 Bayes Rule ... 61
 4.2.5 Example: Calculations with Likelihood Ratios 62
 4.2.6 Prediction with Naïve Bayes 63
 4.2.7 Examples of Naïve Bayes 65
 4.2.8 Calibration and Naïve Bayes 65
 4.2.9 Logistic Regression and Bayes 65
 4.2.10 More Flexible Approaches to Binary Outcomes 65
4.2.11 Classification and Regression Trees 67
4.2.12 Example: Mortality in Acute MI Patients 67
4.2.13 Advantages and Disadvantages of Tree Models 67
4.2.14 Trees as Special Cases of Logistic Regression Modelling .. 69
4.2.15 Other Methods for Binary Outcomes 70
4.2.16 Summary on Binary Outcomes 71
4.3 Categorical Outcomes ... 71
4.3.1 Polytomous Logistic Regression 72
4.3.2 Example: Histology of Residual Masses 72
4.3.3 Alternative Models .. 73
4.3.4 Comparison of Modelling Approaches 74
4.4 Ordinal Outcomes .. 74
4.4.1 Proportional Odds Logistic Regression 75
4.4.2 Alternative: Continuation Ratio Model 77
4.5 Survival Outcomes .. 77
4.5.1 Cox Proportional Hazards Regression 77
4.5.2 Predicting with Cox .. 78
4.5.3 Proportionality Assumption 78
4.5.4 Kaplan–Meier Analysis 79
4.5.5 Example: NFI After Treatment of Leprosy 79
4.5.6 Parametric Survival .. 80
4.5.7 Example: Replacement of Risky Heart Valves 80
4.5.8 Summary on Survival Outcomes 81

4.6 Concluding Remarks .. 81

5 Overfitting and Optimism in Prediction Models 83
5.1 Overfitting and Optimism .. 83
5.1.1 Example: Surgical Mortality in Oesophagectomy 84
5.1.2 Variability within One Centre 84
5.1.3 Variability between Centres: Noise vs. True Heterogeneity .. 85
5.1.4 Predicting Mortality by Centre: Shrinkage 87
5.2 Overfitting in Regression Models 87
5.2.1 Model Uncertainty: Testimation 87
5.2.2 Other Biases ... 89
5.2.3 Overfitting by Parameter Uncertainty 90
5.2.4 Optimism in Model Performance 90
5.2.5 Optimism-Corrected Performance 92
5.3 Bootstrap Resampling .. 92
5.3.1 Applications of the Bootstrap 93
5.3.2 Bootstrapping for Regression Coefficients 93
5.3.3 Bootstrapping for Optimism Correction 94
5.3.4 Calculation of Optimism-Corrected Performance 95
5.3.5 Example: Stepwise Selection in 429 Patients 96
5.4 Cost of Data Analysis 97
5.4.1 Example: Cost of Data Analysis in a Tree Model 98
5.4.2 Practical Implications 98
5.5 Concluding Remarks 99

6 Choosing Between Alternative Statistical Models 101
6.1 Prediction with Statistical Models 101
6.1.1 Testing of Model Assumptions and Prediction 102
6.1.2 Choosing a Type of Model 102
6.2 Modelling Age–Outcome Relationships 103
6.2.1 Age and Mortality After Acute MI 103
6.2.2 Age and Operative Mortality 103
6.2.3 Age–Outcome Relationships in Other Diseases 106
6.3 Head-to-Head Comparisons 107
6.3.1 StatLog Results 107
6.3.2 GUSTO-I Modelling Comparisons 108
6.3.3 GUSTO-I Results 109
6.4 Concluding Remarks 110

Part II Developing Valid Prediction Models

7 Dealing with Missing Values 113
7.1 Missing Values in Predictors 115
7.1.1 Inefficiency of Complete Case Analysis 116
7.1.2 Interpretation of Analyses with Missing Data 117
7.1.3 Missing Data Mechanisms 117
7.1.4 Summary Points 118
7.2 Regression Coefficients Under MCAR, MAR, and MNAR .. 118
7.2.1 R Code .. 120
7.3 Missing Values in Regression Analysis 121
7.3.1 Imputation Principle 121
7.3.2 Simple and More Advanced Single Imputation Methods 122
7.3.3 Multiple Imputation 123
7.4 Defining the Imputation Model 124
7.4.1 Transformations of Variables 125
7.4.2 Imputation Models for SI 125
7.4.3 Summary Points 126
7.5 Simulations of Imputation Under MCAR, MAR, and MNAR . 126
7.5.1 Multiple Predictors 127
7.6 Imputation of Missing Outcomes 128
7.7 Guidance to Missing Values in Prediction Research 129
7.7.1 Patterns of Missingness 129
7.7.2 Simple Approaches 130
7.7.3 Maximum Fraction of Missing Values Before Omitting a Predictor 131
7.7.4 Single or Multiple Imputation for Predictor Effects? ... 131
7.7.5 Single or Multiple Imputation for Predictions? ... 132
7.7.6 Reporting of Missing Values in Prediction Research ... 133
7.8 Concluding Remarks .. 134
7.8.1 Summary Statements 135
7.8.2 Currently Available Software and Challenges ... 136

8 Case Study on Dealing with Missing Values 139
8.1 Introduction .. 139
8.1.1 Aim ... 139
8.1.2 Patient Selection .. 140
8.1.3 Selection of Potential Predictors .. 140
8.1.4 Coding and Time Dependency of Predictors ... 141
8.2 Missing Values in the IMPACT Study 142
8.2.1 Missing Values in Outcome 142
8.2.2 Quantification of Missingness of Predictors ... 143
8.2.3 Patterns of Missingness 144
8.3 Imputation of Missing Predictor Values 147
8.3.1 Correlations Between Predictors 147
8.3.2 Imputation Model .. 147
8.3.3 Distributions of Imputed Values 149
8.4 Estimating Adjusted Effects 149
8.4.1 Adjusted Analysis for Complete Predictors: Age and Motor Score 151
8.4.2 Adjusted Analysis for Incomplete Predictors: Pupils ... 154
8.5 Multivariable Analyses .. 155
8.6 Concluding Remarks ... 155

9 Coding of Categorical and Continuous Predictors 159
9.1 Categorical Predictors ... 159
9.1.1 Examples of Categorical Coding 160
9.2 Continuous Predictors ... 161
9.2.1 Examples of Continuous Predictors 161
9.2.2 Categorization of Continuous Predictors 162
9.3 Non-Linear Functions for Continuous Predictors 163
9.3.1 Polynomials .. 164
9.3.2 Fractional Polynomials .. 164
9.3.3 Splines .. 165
9.3.4 Example: Functional Forms with RCS or FP .. 166
9.3.5 Extrapolation and Robustness 166
9.4 Outliers and Truncation .. 167
 9.4.1 Example: Glucose Values and Outcome of TBI 168
9.5 Interpretation of Effects of Continuous Predictors 170
 9.5.1 Example: Predictor Effects in TBI 171
9.6 Concluding Remarks .. 172
 9.6.1 Software ... 172

10 Restrictions on Candidate Predictors 175
 10.1 Selection Before Studying the Predictor–Outcome
 Relationship ... 175
 10.1.1 Selection Based on Subject Knowledge 175
 10.1.2 Example: Too Many Candidate Predictors 176
 10.1.3 Meta-Analysis for Candidate Predictors 176
 10.1.4 Example: Predictors in Testicular Cancer 176
 10.1.5 Selection Based on Distributions 177
 10.2 Combining Similar Variables 177
 10.2.1 Example: Coding of Comorbidity 178
 10.2.2 Assessing the Equal Weights Assumption 178
 10.2.3 Logical Weighting 179
 10.2.4 Statistical Combination 180
 10.3 Averaging Effects ... 180
 10.3.1 Example: Chlamydia Trachomatis Infection Risks ... 180
 10.3.2 Example: Acute Surgery Risk Relevant for
 Elective Patients? 180
 10.4 Case study: Family History for Prediction of a
 Genetic Mutation ... 181
 10.4.1 Clinical Background and Patient Data 181
 10.4.2 Similarity of Effects 182
 10.4.3 CRC and Adenoma in a Proband 184
 10.4.4 Age of CRC in Family History 185
 10.4.5 Full Prediction Model for Mutations 186
 10.5 Concluding Remarks ... 187

11 Selection of Main Effects ... 191
 11.1 Predictor Selection .. 191
 11.1.1 Reduction Before Modelling 191
 11.1.2 Reduction While Modelling 192
 11.1.3 Collinearity .. 192
 11.1.4 Parsimony ... 193
 11.1.5 Should Non-Significant Variables Be Removed? ... 193
 11.1.6 Summary Points 194
 11.2 Stepwise Selection .. 194
 11.2.1 Stepwise Selection Variants 194
 11.2.2 Stopping Rules in Stepwise Selection 195
11.3 Advantages of Stepwise Methods .. 196
11.4 Disadvantages of Stepwise Methods 197
 11.4.1 Instability of selection .. 197
 11.4.2 Biased Estimation of Coefficients 199
 11.4.3 Bias of Stepwise Selection and Events Per Variable 199
 11.4.4 Misspecification of Variability 201
 11.4.5 Exaggeration of P-Values 204
 11.4.6 Predictions of Worse Quality Than from a Full Model 204
11.5 Influence of Noise Variables 205
11.6 Univariate Analyses and Model Specification 206
 11.6.1 Pros and Cons of Univariate Pre-Selection 207
 11.6.2 Testing of Predictors within Domains 207
11.7 Modern Selection Methods .. 207
 11.7.1 Bootstrapping for Selection 208
 11.7.2 Bagging and Boosting 208
 11.7.3 Bayesian Model Averaging (BMA) 208
 11.7.4 Practical Advantages of BMA 209
 11.7.5 Shrinkage of Regression Coefficients to Zero 210
11.8 Concluding Remarks .. 210

12 Assumptions in Regression Models: Additivity and Linearity 213
 12.1 Additivity and Interaction Terms 213
 12.1.1 Potential Interaction Terms to Consider 214
 12.1.2 Interactions with Treatment 214
 12.1.3 Other Potential Interactions 215
 12.1.4 Example: Time and Survival After Valve Replacement 216
 12.2 Selection, Estimation and Performance with Interaction Terms ... 216
 12.2.1 Example: Age Interactions in GUSTO-I 217
 12.2.2 Estimation of Interaction Terms 217
 12.2.3 Better Prediction with Interaction Terms? 219
 12.2.4 Summary Points ... 220
 12.3 Non-linearity in Multivariable Analysis 220
 12.3.1 Multivariable Restricted Cubic Splines (RCS) 220
 12.3.2 Multivariable Fractional Polynomials (FP) 221
 12.3.3 Multivariable Splines in GAM 222
 12.4 Example: Non-Linearity in Testicular Cancer Case Study 222
 12.4.1 Details of Multivariable FP and GAM Analyses 224
 12.4.2 GAM in Univariate and Multivariable Analysis 224
 12.4.3 Predictive Performance 226
 12.4.4 R code for Non-Linear Modelling 227
 12.5 Concluding Remarks ... 227
 12.5.1 Recommendations .. 228
13 Modern Estimation Methods

13.1 Predictions from Regression and Other Models
13.2 Shrinkage
13.2.1 Uniform Shrinkage
13.2.2 Uniform Shrinkage in GUSTO-I
13.3 Penalized Estimation
13.3.1 Penalized Maximum Likelihood Estimation
13.3.2 Penalized ML in Sample4
13.3.3 Shrinkage, Penalization, and Model Selection
13.4 Lasso
13.4.1 Estimation of Lasso Model
13.4.2 Lasso in GUSTO-I
13.4.3 Predictions after Shrinkage
13.4.4 Model Performance after Shrinkage
13.5 Concluding Remarks

14 Estimation with External Information

14.1 Combining Literature and Individual Patient Data
14.1.1 Adaptation Method 1
14.1.2 Adaptation Method 2
14.1.3 Estimation
14.1.4 Simulation Results
14.1.5 Performance of Adapted Model
14.1.6 Improving Calibration
14.2 Example: Mortality of Aneurysm Surgery
14.2.1 Meta-Analysis
14.2.2 Individual Patient Data Analysis
14.2.3 Adaptation Results
14.3 Alternative Approaches
14.3.1 Overall Calibration
14.3.2 Bayesian Methods: Using Data Priors to Regression Modelling
14.3.3 Example: Predicting Neonatal Death
14.3.4 Example: Mortality of Aneurysm Surgery
14.4 Concluding Remarks

15 Evaluation of Performance

15.1 Overall Performance Measures
15.1.1 Explained Variation: R^2
15.1.2 Brier Score
15.1.3 Example: Performance of Testicular Cancer Prediction Model
15.1.4 Overall Performance Measures in Survival
Part III Generalizability of Prediction Models

19 Patterns of External Validity

19.1 Determinants of External Validity
19.1.1 Case-Mix
19.1.2 Differences in Case-Mix
19.1.3 Differences in Regression Coefficients
19.2 Impact on Calibration, Discrimination, and Clinical Usefulness
19.2.1 Simulation Set-Up
19.2.2 Performance Measures
19.3 Distribution of Predictors
19.3.1 More- or Less-Severe Case-Mix According to X
19.3.2 Example: Interpretation of Testicular Cancer Validation
19.3.3 More or Less Heterogeneous Case-Mix According to X
19.3.4 More- or Less-Severe Case-Mix According to Z
19.3.5 More or Less Heterogeneous Case-Mix According to Z
19.4 Distribution of Observed Outcomes Y
19.5 Coefficients β
19.5.1 Coefficient of Linear Predictor < 1
19.5.2 Coefficients Different
19.5.3 R Code
19.5.4 Influence of Different Coefficients
19.5.5 Other Scenarios of Invalidity
19.5.6 Summary of Patterns of Invalidity
19.6 Reference Values for Performance
19.6.1 Calculation of Reference Values
19.6.2 R Code
19.6.3 Performance with Refitting
19.6.4 Examples: Testicular Cancer and TBI
21 Updating for Multiple Settings

21.1 Differences Between Settings

- 21.1.1 Testing for Calibration-in-the Large
- 21.1.2 Illustration of Heterogeneity in GUSTO-I
- 21.1.3 Updating for Better Calibration-in-the Large
- 21.1.4 Empirical Bayes Estimates
- 21.1.5 Illustration of Updating in GUSTO-I
- 21.1.6 Testing and Updating of Predictor Effects
- 21.1.7 Heterogeneity of Predictor Effects in GUSTO-I
- 21.1.8 R Code for Random Effect Analyses

21.2 Provider Profiling

- 21.2.1 Indicators for Differences Between Centres
- 21.2.2 Ranking of Centres
- 21.2.3 Example: Provider Profiling in Stroke
- 21.2.4 Testing of Differences Between Centres
- 21.2.5 Estimation of Differences Between Centres
- 21.2.6 Uncertainty in Differences
- 21.2.7 Ranking of Centres
- 21.2.8 Essential R Code for Provider Profiling
- 21.2.9 Guidelines for Provider Profiling

21.3 Concluding Remarks

- 21.3.1 Bibliographic Notes

22 Prediction of a Binary Outcome: 30-Day Mortality After Acute Myocardial Infarction

22.1 GUSTO-I Study

- 22.1.1 Acute Myocardial Infarction
- 22.1.2 Treatment Results from GUSTO-I
- 22.1.3 Prognostic Modelling in GUSTO-I

22.2 General Considerations of Model Development

- 22.2.1 Research Question and Intended Application
- 22.2.2 Outcome and Predictors
- 22.2.3 Study Design and Analysis

22.3 Seven Modelling Steps in GUSTO-I

- 22.3.1 Data Inspection
- 22.3.2 Coding of Predictors
- 22.3.3 Model Specification
- 22.3.4 Model Estimation
- 22.3.5 Model Performance
- 22.3.6 Model Validation
- 22.3.7 Presentation

Part IV Applications

- **22 Prediction of a Binary Outcome: 30-Day Mortality After Acute Myocardial Infarction**
 - 22.1 GUSTO-I Study
 - 22.2 General Considerations of Model Development
 - 22.3 Seven Modelling Steps in GUSTO-I
22.4 Validity
- **22.4.1 Internal Validity: Overfitting**
- **22.4.2 External Validity: Generalizability**
- **22.4.3 Summary Points**

22.5 Translation into Clinical Practice
- **22.5.1 Score Chart for Choosing Thrombolytic Therapy**
- **22.5.2 Predictions for Choosing Thrombolytic Therapy**
- **22.5.3 Covariate Adjustment in GUSTO-I**

22.6 Concluding Remarks

23 Case Study on Survival Analysis: Prediction of Secondary Cardiovascular Events

23.1 Prognosis in the SMART Study

23.2 General Considerations in SMART
- **23.2.1 Research Question and Intended Application**
- **23.2.2 Outcome and Predictors**
- **23.2.3 Study Design and Analysis**

23.3 Data Inspection Steps in the SMART Cohort

23.4 Coding of Predictors
- **23.4.1 Extreme Values**
- **23.4.2 Transforming Continuous Predictors**
- **23.4.3 Combining Predictors with Similar Effects**

23.5 Model Specification
- **23.5.1 Selection**

23.6 Model Estimation, Performance, Validation, and Presentation
- **23.6.1 Model Estimation**
- **23.6.2 Model Performance**
- **23.6.3 Model Validation: Stability**
- **23.6.4 Model Validation: Optimism**
- **23.6.5 Model Presentation**

23.7 Concluding Remarks

24 Lessons from Case Studies

24.1 Sample Size
- **24.1.1 Example: Sample Size and Number of Predictors**
- **24.1.2 Number of Predictors**
- **24.1.3 Potential Solutions**

24.2 Validation
- **24.2.1 Examples of Internal and External Validation**

24.3 Subject Matter Knowledge

24.4 Data Sets
- **24.4.1 GUSTO-I Prediction Models**
- **24.4.2 Modern Learning Methods in GUSTO-I**
24.4.3 Modelling Strategies in Small Data Sets from GUSTO-I ... 453
24.4.4 SMART Case Study .. 453
24.4.5 Testicular Cancer Case Study 455
24.4.6 Abdominal Aortic Aneurysm Case Study 455
24.4.7 Traumatic Brain Injury Data Set 459
24.5 Concluding Remarks.. 459

References .. 463
Index .. 487
Clinical Prediction Models
A Practical Approach to Development, Validation, and Updating
Steyerberg, E.
2009, XXVIII, 500 p., Hardcover
ISBN: 978-0-387-77243-1