Contents

Preface ... vii
Acknowledgements .. xi

1 Introduction .. 1
 1.1 Prognosis and Prediction in Medicine 1
 1.1.1 Prediction Models and Decision-Making 1
 1.2 Statistical Modelling for Prediction 2
 1.2.1 Model Uncertainty 3
 1.2.2 Sample Size 4
 1.3 Structure of the Book 5
 1.3.1 Part I: Prediction Models in Medicine 5
 1.3.2 Part II: Developing Valid Prediction Models 6
 1.3.3 Part III: Generalizability of Prediction Models 6
 1.3.4 Part IV: Applications 7
 1.3.5 Questions and Exercises 7

Part I Prediction Models in Medicine

2 Applications of Prediction Models 9
 2.1 Applications: Medical Practice and Research 11
 2.2 Prediction Models for Public Health 12
 2.2.1 Targeting of Preventive Interventions 12
 2.2.2 Example: Incidence of Breast Cancer 12
 2.3 Prediction Models for Clinical Practice 13
 2.3.1 Decision Support on Test Ordering 13
 2.3.2 Example: Predicting Renal Artery Stenosis 14
 2.3.3 Starting Treatment: the Treatment Threshold 15
 2.3.4 Example: Probability of Deep Venous Thrombosis 16
 2.3.5 Intensity of Treatment 16
 2.3.6 Example: Defining a Poor Prognosis Subgroup in Cancer 18
2.3.7 Cost-Effectiveness of Treatment 18
2.3.8 Delaying Treatment .. 19
2.3.9 Example: Spontaneous Pregnancy Chances 19
2.3.10 Surgical Decision-Making 21
2.3.11 Example: Replacement of Risky Heart Valves 21

2.4 Prediction Models for Medical Research 23
2.4.1 Inclusion and Stratification in an RCT 23
2.4.2 Example: Selection for TBI Trials 24
2.4.3 Covariate Adjustment in an RCT 25
2.4.4 Gain in Power by Covariate Adjustment 26
2.4.5 Example: Analysis of the GUSTO-III Trial 27
2.4.6 Prediction Models and Observational Studies 27
2.4.7 Propensity Scores ... 28
2.4.8 Example: Statin Treatment Effects 28
2.4.9 Provider Profiling ... 29
2.4.10 Example: Ranking Cardiac Outcome 29

2.5 Concluding Remarks .. 30

3 Study Design for Prediction Models 33
3.1 Study Design ... 33
3.2 Cohort Studies for Prognosis 33
3.2.1 Retrospective Designs 35
3.2.2 Example: Predicting Early Mortality in Oesophageal Cancer .. 35
3.2.3 Prospective Designs .. 35
3.2.4 Example: Predicting Long-Term Mortality in Oesophageal Cancer .. 36
3.2.5 Registry Data ... 36
3.2.6 Example: Surgical Mortality in Oesophageal Cancer ... 37
3.2.7 Nested Case–Control Studies 37
3.2.8 Example: Perioperative Mortality in Major Vascular Surgery ... 38
3.3 Studies for Diagnosis .. 38
3.3.1 Cross-Sectional Study Design and Multivariable Modelling .. 38
3.3.2 Example: Diagnosing Renal Artery Stenosis 38
3.3.3 Case–Control Studies 39
3.3.4 Example: Diagnosing Acute Appendicitis 39
3.4 Predictors and Outcome 39
3.4.1 Strength of Predictors 39
3.4.2 Categories of Predictors 40
3.4.3 Costs of Predictors .. 40
3.4.4 Determinants of Prognosis 41
3.4.5 Prognosis in Oncology 41
3.5 Reliability of Predictors ... 42
 3.5.1 Observer Variability .. 42
 3.5.2 Example: Histology in Barrett’s Oesophagus 42
 3.5.3 Biological Variability 43
 3.5.4 Regression Dilution Bias 43
 3.5.5 Example: Simulation Study on Reliability of a
 Binary Predictor ... 43
 3.5.6 Choice of Predictors 44
3.6 Outcome .. 44
 3.6.1 Types of Outcome .. 44
 3.6.2 Survival Endpoints 45
 3.6.3 Example: Relative Survival in Cancer Registries 45
 3.6.4 Composite End Points 46
 3.6.5 Example: Mortality and Composite End Points
 in Cardiology .. 46
 3.6.6 Choice of Prognostic Outcome 46
 3.6.7 Diagnostic End Points 47
 3.6.8 Example: PET Scans in Oesophageal Cancer 47
3.7 Phases of Biomarker Development 47
3.8 Statistical Power ... 48
 3.8.1 Statistical Power to Identify Predictor Effects 49
 3.8.2 Examples of Statistical Power Calculations 49
 3.8.3 Statistical Power for Reliable Predictions 50
3.9 Concluding Remarks ... 51

4 Statistical Models for Prediction 53
 4.1 Continuous Outcomes ... 53
 4.1.1 Examples of Linear Regression 54
 4.1.2 Economic Outcomes 54
 4.1.3 Example: Prediction of Costs 54
 4.1.4 Transforming the Outcome 54
 4.1.5 Performance: Explained Variation
 4.1.6 More Flexible Approaches 55
 4.2 Binary Outcomes .. 57
 4.2.1 \(R^2 \) in Logistic Regression Analysis 58
 4.2.2 Calculation of \(R^2 \) on the Log Likelihood Scale ... 58
 4.2.3 Models Related to Logistic Regression 60
 4.2.4 Bayes Rule .. 61
 4.2.5 Example: Calculations with Likelihood Ratios 62
 4.2.6 Prediction with Naïve Bayes 63
 4.2.7 Examples of Naïve Bayes 65
 4.2.8 Calibration and Naïve Bayes 65
 4.2.9 Logistic Regression and Bayes 65
 4.2.10 More Flexible Approaches to Binary Outcomes 65
4.2.11 Classification and Regression Trees 67
4.2.12 Example: Mortality in Acute MI Patients 67
4.2.13 Advantages and Disadvantages of Tree Models 67
4.2.14 Trees as Special Cases of Logistic Regression Modelling 69
4.2.14 Other Methods for Binary Outcomes 70
4.2.15 Summary on Binary Outcomes ... 71
4.3 Categorical Outcomes ... 71
4.3.1 Polytomous Logistic Regression .. 72
4.3.2 Example: Histology of Residual Masses 72
4.3.3 Alternative Models ... 73
4.3.4 Comparison of Modelling Approaches 74
4.4 Ordinal Outcomes ... 74
4.4.1 Proportional Odds Logistic Regression 75
4.4.2 Alternative: Continuation Ratio Model 77
4.5 Survival Outcomes ... 77
4.5.1 Cox Proportional Hazards Regression 77
4.5.2 Predicting with Cox .. 78
4.5.3 Proportionality Assumption ... 78
4.5.4 Kaplan–Meier Analysis .. 79
4.5.5 Example: NFI After Treatment of Leprosy 79
4.5.6 Parametric Survival ... 80
4.5.7 Example: Replacement of Risky Heart Valves 80
4.5.8 Summary on Survival Outcomes .. 81
4.6 Concluding Remarks ... 81

5 Overfitting and Optimism in Prediction Models 83
5.1 Overfitting and Optimism .. 83
5.1.1 Example: Surgical Mortality in Oesophagectomy 84
5.1.2 Variability within One Centre ... 84
5.1.3 Variability between Centres: Noise vs. True Heterogeneity 85
5.1.4 Predicting Mortality by Centre: Shrinkage 87
5.2 Overfitting in Regression Models .. 87
5.2.1 Model Uncertainty: Testimation ... 87
5.2.2 Other Biases ... 89
5.2.3 Overfitting by Parameter Uncertainty 90
5.2.4 Optimism in Model Performance 90
5.2.5 Optimism-Corrected Performance 92
5.3 Bootstrap Resampling .. 92
5.3.1 Applications of the Bootstrap ... 93
5.3.2 Bootstrapping for Regression Coefficients 93
5.3.3 Bootstrapping for Optimism Correction 94
5.3.4 Calculation of Optimism-Corrected Performance 95
8 Case Study on Dealing with Missing Values

8.1 Introduction

8.1.1 Aim

8.1.2 Patient Selection

8.1.3 Selection of Potential Predictors

8.1.4 Coding and Time Dependency of Predictors

8.2 Missing Values in the IMPACT Study

8.2.1 Missing Values in Outcome

8.2.2 Quantification of Missingness of Predictors

8.2.3 Patterns of Missingness

8.3 Imputation of Missing Predictor Values

8.3.1 Correlations Between Predictors

8.3.2 Imputation Model

8.3.3 Distributions of Imputed Values

8.4 Estimating Adjusted Effects

8.4.1 Adjusted Analysis for Complete Predictors: Age and Motor Score

8.4.2 Adjusted Analysis for Incomplete Predictors: Pupils

8.5 Multivariable Analyses

8.6 Concluding Remarks

9 Coding of Categorical and Continuous Predictors

9.1 Categorical Predictors

9.1.1 Examples of Categorical Coding

9.2 Continuous Predictors

9.2.1 Examples of Continuous Predictors

9.2.2 Categorization of Continuous Predictors

9.3 Non-Linear Functions for Continuous Predictors

9.3.1 Polynomials

9.3.2 Fractional Polynomials

9.3.3 Splines

9.3.4 Example: Functional Forms with RCS or FP

9.3.5 Extrapolation and Robustness
9.4 Outliers and Truncation ... 167
 9.4.1 Example: Glucose Values and Outcome of TBI 168
9.5 Interpretation of Effects of Continuous Predictors 170
 9.5.1 Example: Predictor Effects in TBI 171
9.6 Concluding Remarks .. 172
 9.6.1 Software ... 172

10 Restrictions on Candidate Predictors 175
 10.1 Selection Before Studying the Predictor–Outcome
 Relationship .. 175
 10.1.1 Selection Based on Subject Knowledge 175
 10.1.2 Example: Too Many Candidate Predictors 176
 10.1.3 Meta-Analysis for Candidate Predictors 176
 10.1.4 Example: Predictors in Testicular Cancer 176
 10.1.5 Selection Based on Distributions 177
 10.2 Combining Similar Variables 177
 10.2.1 Example: Coding of Comorbidity 178
 10.2.2 Assessing the Equal Weights Assumption 178
 10.2.3 Logical Weighting ... 179
 10.2.4 Statistical Combination 180
 10.3 Averaging Effects .. 180
 10.3.1 Example: Chlamydia Trachomatis Infection Risks 180
 10.3.2 Example: Acute Surgery Risk Relevant for
 Elective Patients? ... 180
 10.4 Case study: Family History for Prediction of a
 Genetic Mutation .. 181
 10.4.1 Clinical Background and Patient Data 181
 10.4.2 Similarity of Effects .. 182
 10.4.3 CRC and Adenoma in a Proband 184
 10.4.4 Age of CRC in Family History 185
 10.4.5 Full Prediction Model for Mutations 186
 10.5 Concluding Remarks .. 187

11 Selection of Main Effects ... 191
 11.1 Predictor Selection .. 191
 11.1.1 Reduction Before Modelling 191
 11.1.2 Reduction While Modelling 192
 11.1.3 Collinearity ... 192
 11.1.4 Parsimony ... 193
 11.1.5 Should Non-Significant Variables Be Removed? 193
 11.1.6 Summary Points ... 194
 11.2 Stepwise Selection .. 194
 11.2.1 Stepwise Selection Variants 194
 11.2.2 Stopping Rules in Stepwise Selection 195
11.3 Advantages of Stepwise Methods 196
11.4 Disadvantages of Stepwise Methods 197
11.4.1 Instability of selection 197
11.4.2 Biased Estimation of Coefficients 199
11.4.3 Bias of Stepwise Selection and Events Per Variable . 199
11.4.4 Misspecification of Variability 201
11.4.5 Exaggeration of P-Values 204
11.4.6 Predictions of Worse Quality Than from a Full Model . 204
11.5 Influence of Noise Variables 205
11.6 Univariate Analyses and Model Specification 206
11.6.1 Pros and Cons of Univariate Pre-Selection 207
11.6.2 Testing of Predictors within Domains 207
11.7 Modern Selection Methods 207
11.7.1 Bootstrapping for Selection 208
11.7.2 Bagging and Boosting 208
11.7.3 Bayesian Model Averaging (BMA) 208
11.7.4 Practical Advantages of BMA 209
11.7.5 Shrinkage of Regression Coefficients to Zero 210
11.8 Concluding Remarks 210

12 Assumptions in Regression Models: Additivity and Linearity . 213
12.1 Additivity and Interaction Terms 213
12.1.1 Potential Interaction Terms to Consider 214
12.1.2 Interactions with Treatment 214
12.1.3 Other Potential Interactions 215
12.1.4 Example: Time and Survival After Valve Replacement 216
12.2 Selection, Estimation and Performance with Interaction Terms ... 216
12.2.1 Example: Age Interactions in GUSTO-I 217
12.2.2 Estimation of Interaction Terms 217
12.2.3 Better Prediction with Interaction Terms? 219
12.2.4 Summary Points 220
12.3 Non-linearity in Multivariable Analysis 220
12.3.1 Multivariable Restricted Cubic Splines (RCS) 220
12.3.2 Multivariable Fractional Polynomials (FP) 221
12.3.3 Multivariable Splines in GAM 222
12.4 Example: Non-Linearity in Testicular Cancer Case Study 222
12.4.1 Details of Multivariable FP and GAM Analyses 224
12.4.2 GAM in Univariate and Multivariable Analysis 224
12.4.3 Predictive Performance 226
12.4.4 R code for Non-Linear Modelling 227
12.5 Concluding Remarks 227
12.5.1 Recommendations 228
13 Modern Estimation Methods

13.1 Predictions from Regression and Other Models
13.2 Shrinkage
 13.2.1 Uniform Shrinkage
 13.2.2 Uniform Shrinkage in GUSTO-I
13.3 Penalized Estimation
 13.3.1 Penalized Maximum Likelihood Estimation
 13.3.2 Penalized ML in Sample4
 13.3.3 Shrinkage, Penalization, and Model Selection
13.4 Lasso
 13.4.1 Estimation of Lasso Model
 13.4.2 Lasso in GUSTO-I
 13.4.3 Predictions after Shrinkage
 13.4.4 Model Performance after Shrinkage
13.5 Concluding Remarks

14 Estimation with External Information

14.1 Combining Literature and Individual Patient Data
 14.1.1 Adaptation Method 1
 14.1.2 Adaptation Method 2
 14.1.3 Estimation
 14.1.4 Simulation Results
 14.1.5 Performance of Adapted Model
 14.1.6 Improving Calibration
14.2 Example: Mortality of Aneurysm Surgery
 14.2.1 Meta-Analysis
 14.2.2 Individual Patient Data Analysis
 14.2.3 Adaptation Results
14.3 Alternative Approaches
 14.3.1 Overall Calibration
 14.3.2 Bayesian Methods: Using Data Priors to Regression Modelling
 14.3.3 Example: Predicting Neonatal Death
 14.3.4 Example: Mortality of Aneurysm Surgery
14.4 Concluding Remarks

15 Evaluation of Performance

15.1 Overall Performance Measures
 15.1.1 Explained Variation: R^2
 15.1.2 Brier Score
 15.1.3 Example: Performance of Testicular Cancer Prediction Model
 15.1.4 Overall Performance Measures in Survival
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1.5</td>
<td>Decomposition in Discrimination and Calibration</td>
</tr>
<tr>
<td>15.1.6</td>
<td>Summary Points</td>
</tr>
<tr>
<td>15.2</td>
<td>Discriminative Ability</td>
</tr>
<tr>
<td>15.2.1</td>
<td>Sensitivity and Specificity of Prediction Models</td>
</tr>
<tr>
<td>15.2.2</td>
<td>Example: Sensitivity and Specificity of Testicular Cancer Prediction Model</td>
</tr>
<tr>
<td>15.2.3</td>
<td>ROC Curve</td>
</tr>
<tr>
<td>15.2.4</td>
<td>R^2 vs. c</td>
</tr>
<tr>
<td>15.2.5</td>
<td>Box Plots and Discrimination Slope</td>
</tr>
<tr>
<td>15.2.6</td>
<td>Lorenz Curve</td>
</tr>
<tr>
<td>15.2.7</td>
<td>Discrimination in Survival Data</td>
</tr>
<tr>
<td>15.2.8</td>
<td>Example: Discrimination of Testicular Cancer Prediction Model</td>
</tr>
<tr>
<td>15.2.9</td>
<td>Verification Bias and Discriminative Ability</td>
</tr>
<tr>
<td>15.2.10</td>
<td>R Code</td>
</tr>
<tr>
<td>15.3</td>
<td>Calibration</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Calibration Plot</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Calibration in Survival</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Calibration-in-the-Large</td>
</tr>
<tr>
<td>15.3.4</td>
<td>Calibration Slope</td>
</tr>
<tr>
<td>15.3.5</td>
<td>Estimation of Calibration-in-the-Large and Calibration Slope</td>
</tr>
<tr>
<td>15.3.6</td>
<td>Other Calibration Measures</td>
</tr>
<tr>
<td>15.3.7</td>
<td>Calibration Tests</td>
</tr>
<tr>
<td>15.3.8</td>
<td>Goodness-of-Fit Tests</td>
</tr>
<tr>
<td>15.3.9</td>
<td>Calibration of Survival Predictions</td>
</tr>
<tr>
<td>15.3.10</td>
<td>Example: Calibration in Testicular Cancer Prediction Model</td>
</tr>
<tr>
<td>15.3.11</td>
<td>Calibration and Discrimination</td>
</tr>
<tr>
<td>15.3.12</td>
<td>R Code</td>
</tr>
<tr>
<td>15.4</td>
<td>Concluding Remarks</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Bibliographic Notes</td>
</tr>
<tr>
<td>16</td>
<td>Clinical Usefulness</td>
</tr>
<tr>
<td>16.1</td>
<td>Clinical Usefulness</td>
</tr>
<tr>
<td>16.1.1</td>
<td>Intuitive Approach to the Cutoff</td>
</tr>
<tr>
<td>16.1.2</td>
<td>Decision-Analytic Approach to the Cutoff</td>
</tr>
<tr>
<td>16.1.3</td>
<td>Error Rate and Accuracy</td>
</tr>
<tr>
<td>16.1.4</td>
<td>Accuracy Measures for Clinical Usefulness</td>
</tr>
<tr>
<td>16.1.5</td>
<td>Decision Curves</td>
</tr>
<tr>
<td>16.1.6</td>
<td>Examples of NB in Decision Curves</td>
</tr>
<tr>
<td>16.1.7</td>
<td>Example: Clinical Usefulness of Prediction Model for Testicular Cancer</td>
</tr>
</tbody>
</table>
18.3.3 Score Chart 324
18.3.4 Coding with Categorization 327
18.3.5 Summary Points 327
18.4 Clinical Decision Rules 328
18.4.1 Regression Tree 328
18.4.2 Score Chart Rule 328
18.4.3 Survival Groups 329
18.4.4 Meta-Model 329
18.5 Concluding Remarks 330

Part III Generalizability of Prediction Models

19 Patterns of External Validity 333
19.1 Determinants of External Validity 335
19.1.1 Case-Mix 335
19.1.2 Differences in Case-Mix 336
19.1.3 Differences in Regression Coefficients 336
19.2 Impact on Calibration, Discrimination, and Clinical Usefulness 337
19.2.1 Simulation Set-Up 338
19.2.2 Performance Measures 339
19.3 Distribution of Predictors 340
19.3.1 More- or Less-Severe Case-Mix According to X 340
19.3.2 Example: Interpretation of Testicular Cancer Validation 341
19.3.3 More or Less Heterogeneous Case-Mix According to X 341
19.3.4 More- or Less-Severe Case-Mix According to Z 342
19.3.5 More or Less Heterogeneous Case-Mix According to Z 344
19.4 Distribution of Observed Outcomes Y 344
19.5 Coefficients β 345
19.5.1 Coefficient of Linear Predictor < 1 345
19.5.2 Coefficients Different 346
19.5.3 R Code .. 346
19.5.4 Influence of Different Coefficients 347
19.5.5 Other Scenarios of Invalidity 348
19.5.6 Summary of Patterns of Invalidity 348
19.6 Reference Values for Performance 349
19.6.1 Calculation of Reference Values 349
19.6.2 R Code .. 350
19.6.3 Performance with Refitting 350
19.6.4 Examples: Testicular Cancer and TBI 351
19.7 Estimation of Performance ... 352
 19.7.1 Uncertainty in Validation of Performance 352
 19.7.2 Estimating Standard Errors in Validation Studies 354
 19.7.3 Summary Points .. 354
19.8 Design of External Validation Studies 355
 19.8.1 Power of External Validation Studies 355
 19.8.2 Required Sample Sizes for Validation Studies 356
 19.8.3 Summary Points .. 357
19.9 Concluding Remarks... 358

20 Updating for a New Setting .. 361
 20.1 Updating the Intercept ... 361
 20.1.1 Simple Updating Methods 362
 20.1.2 Bayesian Updating ... 362
 20.2 Approaches to More-Extensive Updating 363
 20.2.1 A comparison of Eight Updating Methods 364
 20.3 Case Study: Validation and Updating in GUSTO-I 366
 20.3.1 Validity of TIMI-II Model for GUSTO-I 366
 20.3.2 Updating the TIMI-II Model for GUSTO-I 368
 20.3.3 Performance of Updated Models 369
 20.3.4 R Code for Updating Methods 370
 20.4 Shrinkage and Updating .. 371
 20.4.1 Example: Shrinkage towards Re-calibrated Values in
 GUSTO-I .. 371
 20.4.2 R code for Shrinkage and Penalization in Updating 372
 20.5 Sample Size and Updating Strategy 373
 20.5.1 Simulations of Sample Size, Shrinkage, and Updating
 Strategy .. 374
 20.6 Validation and Updating of Tree Models 376
 20.6.1 Example: Tree Modelling in Testicular Cancer 377
 20.7 Validation and Updating of Survival Models 378
 20.7.1 Case Study: Validation of a Simple Index for
 Non-Hodgkin’s Lymphoma .. 379
 20.7.2 Updating the Prognostic Index 380
 20.7.3 Re-calibration for Groups by Time Points 380
 20.7.4 Re-calibration with a Cox Regression Model 381
 20.7.5 Parametric Re-calibration 382
 20.7.6 Summary Points .. 384
 20.8 Continuous Updating .. 384
 20.8.1 A Continuous Updating Strategy 385
 20.8.2 Example: Continuous Updating in GUSTO-I 386
 20.9 Concluding Remarks... 388
21 Updating for Multiple Settings

21.1 Differences Between Settings

21.1.1 Testing for Calibration-in-the Large

21.1.2 Illustration of Heterogeneity in GUSTO-I

21.1.3 Updating for Better Calibration-in-the Large

21.1.4 Empirical Bayes Estimates

21.1.5 Illustration of Updating in GUSTO-I

21.1.6 Testing and Updating of Predictor Effects

21.1.7 Heterogeneity of Predictor Effects in GUSTO-I

21.1.8 R Code for Random Effect Analyses

21.2 Provider Profiling

21.2.1 Indicators for Differences Between Centres

21.2.2 Ranking of Centres

21.2.3 Example: Provider Profiling in Stroke

21.2.4 Testing of Differences Between Centres

21.2.5 Estimation of Differences Between Centres

21.2.6 Uncertainty in Differences

21.2.7 Ranking of Centres

21.2.8 Essential R Code for Provider Profiling

21.2.9 Guidelines for Provider Profiling

21.3 Concluding Remarks

21.3.1 Bibliographic Notes

Part IV Applications

22 Prediction of a Binary Outcome: 30-Day Mortality After Acute Myocardial Infarction

22.1 GUSTO-I Study

22.1.1 Acute Myocardial Infarction

22.1.2 Treatment Results from GUSTO-I

22.1.3 Prognostic Modelling in GUSTO-I

22.2 General Considerations of Model Development

22.2.1 Research Question and Intended Application

22.2.2 Outcome and Predictors

22.2.3 Study Design and Analysis

22.3 Seven Modelling Steps in GUSTO-I

22.3.1 Data Inspection

22.3.2 Coding of Predictors

22.3.3 Model Specification

22.3.4 Model Estimation

22.3.5 Model Performance

22.3.6 Model Validation

22.3.7 Presentation
22.4 Validity
- 22.4.1 Internal Validity: Overfitting
- 22.4.2 External Validity: Generalizability
- 22.4.3 Summary Points

22.5 Translation into Clinical Practice
- 22.5.1 Score Chart for Choosing Thrombolytic Therapy
- 22.5.2 Predictions for Choosing Thrombolytic Therapy
- 22.5.3 Covariate Adjustment in GUSTO-I

22.6 Concluding Remarks

23 Case Study on Survival Analysis: Prediction of Secondary Cardiovascular Events
- 23.1 Prognosis in the SMART Study
 - 23.1.1 Patients in SMART
- 23.2 General Considerations in SMART
 - 23.2.1 Research Question and Intended Application
 - 23.2.2 Outcome and Predictors
 - 23.2.3 Study Design and Analysis
- 23.3 Data Inspection Steps in the SMART Cohort
- 23.4 Coding of Predictors
 - 23.4.1 Extreme Values
 - 23.4.2 Transforming Continuous Predictors
 - 23.4.3 Combining Predictors with Similar Effects
- 23.5 Model Specification
 - 23.5.1 Selection
- 23.6 Model Estimation, Performance, Validation, and Presentation
 - 23.6.1 Model Estimation
 - 23.6.2 Model Performance
 - 23.6.3 Model Validation: Stability
 - 23.6.4 Model Validation: Optimism
 - 23.6.5 Model Presentation
- 23.7 Concluding Remarks

24 Lessons from Case Studies
- 24.1 Sample Size
 - 24.1.1 Example: Sample Size and Number of Predictors
 - 24.1.2 Number of Predictors
 - 24.1.3 Potential Solutions
- 24.2 Validation
 - 24.2.1 Examples of Internal and External Validation
- 24.3 Subject Matter Knowledge
- 24.4 Data Sets
 - 24.4.1 GUSTO-I Prediction Models
 - 24.4.2 Modern Learning Methods in GUSTO-I
24.4.3 Modelling Strategies in Small Data Sets from GUSTO-I .. 453
24.4.4 SMART Case Study .. 453
24.4.5 Testicular Cancer Case Study 455
24.4.6 Abdominal Aortic Aneurysm Case Study 455
24.4.7 Traumatic Brain Injury Data Set 459
24.5 Concluding Remarks ... 459

References .. 463
Index ... 487
Clinical Prediction Models
A Practical Approach to Development, Validation, and Updating
Steyerberg, E.
2009, XXVIII, 500 p., Hardcover
ISBN: 978-0-387-77243-1