Contents

Preface .. v

Part I Overview of Quantitative Finance and Risk Management Research

1 Theoretical Framework of Finance .. 3
 1.1 Introduction .. 3
 1.2 Discounted Cash-Flow Valuation Theory ... 3
 1.3 M and M Valuation Theory ... 6
 1.4 Markowitz Portfolio Theory ... 10
 1.5 Capital Asset Pricing Model .. 10
 1.6 Arbitrage Pricing Theory .. 12
 1.7 Option Valuation .. 14
 1.8 Futures Valuation and Hedging ... 15
 1.9 Conclusion ... 22
References .. 22

2 Investment, Dividend, Financing, and Production Policies: Theory and Implications .. 23
 2.1 Introduction .. 23
 2.2 Investment and Dividend Interactions: The Internal Versus External Financing Decision ... 23
 2.3 Interactions Between Dividend and Financing Policies 25
 2.4 Interactions Between Financing and Investment Decisions 28
 2.5 Implications of Financing and Investment Interactions for Capital Budgeting .. 30
 2.6 Implications of Different Policies on the Beta Coefficient 34
 2.7 Conclusion ... 36
References .. 36

Appendix 2A Stochastic Dominance and its Applications to Capital-Structure Analysis with Default Risk .. 38
 2A.1 Introduction .. 38
 2A.2 Concepts and Theorems of Stochastic Dominance 38
 2A.3 Stochastic-Dominance Approach to Investigating the Capital-Structure Problem with Default Risk 39
 2A.4 Summary .. 40
<table>
<thead>
<tr>
<th>3</th>
<th>Research Methods in Quantitative Finance and Risk Management</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Statistics</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Econometrics</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>Mathematics</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>Other Disciplines</td>
<td>48</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusion</td>
<td>49</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Part II Portfolio Theory and Investment Analysis

<table>
<thead>
<tr>
<th>4</th>
<th>Foundation of Portfolio Theory</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheng-Few Lee, Alice C. Lee, and John Lee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Risk Classification and Measurement</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Portfolio Analysis and Application</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>The Efficient Portfolio and Risk Diversification</td>
<td>60</td>
</tr>
<tr>
<td>4.5</td>
<td>Determination of Commercial Lending Rate</td>
<td>64</td>
</tr>
<tr>
<td>4.6</td>
<td>The Market Rate of Return and Market Risk Premium</td>
<td>66</td>
</tr>
<tr>
<td>4.7</td>
<td>Conclusion</td>
<td>68</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>68</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Risk-Aversion, Capital Asset Allocation, and Markowitz Portfolio-Selection Model</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheng-Few Lee, Joseph E. Finnerty, and Hong-Yi Chen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>69</td>
</tr>
<tr>
<td>5.2</td>
<td>Measurement of Return and Risk</td>
<td>69</td>
</tr>
<tr>
<td>5.3</td>
<td>Utility Theory, Utility Functions, and Indifference Curves</td>
<td>71</td>
</tr>
<tr>
<td>5.4</td>
<td>Efficient Portfolios</td>
<td>77</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusion</td>
<td>91</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Capital Asset Pricing Model and Beta Forecasting</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheng-Few Lee, Joseph E. Finnerty, and Donald H. Wort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>93</td>
</tr>
<tr>
<td>6.2</td>
<td>A Graphical Approach to the Derivation of the Capital Asset Pricing Model</td>
<td>93</td>
</tr>
<tr>
<td>6.3</td>
<td>Mathematical Approach to the Derivation of the Capital Asset Pricing Model</td>
<td>96</td>
</tr>
<tr>
<td>6.4</td>
<td>The Market Model and Risk Decomposition</td>
<td>97</td>
</tr>
<tr>
<td>6.5</td>
<td>Growth Rates, Accounting Betas, and Variance in EBIT</td>
<td>100</td>
</tr>
<tr>
<td>6.6</td>
<td>Some Applications and Implications of the Capital Asset Pricing Model</td>
<td>104</td>
</tr>
<tr>
<td>6.7</td>
<td>Conclusion</td>
<td>105</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>Appendix 6A Empirical Evidence for the Risk-Return Relationship</td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>Appendix 6B Anomalies in the Semi-strong Efficient-Market Hypothesis</td>
<td></td>
<td>109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Index Models for Portfolio Selection</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheng-Few Lee, Joseph E. Finnerty, and Donald H. Wort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>111</td>
</tr>
<tr>
<td>7.2</td>
<td>The Single-Index Model</td>
<td>111</td>
</tr>
<tr>
<td>7.3</td>
<td>Multiple Indexes and the Multiple-Index Model</td>
<td>118</td>
</tr>
<tr>
<td>7.4</td>
<td>Conclusion</td>
<td>121</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>122</td>
</tr>
</tbody>
</table>
Contents

- **Appendix 7A** A Linear-Programming Approach to Portfolio-Analysis Models ... 122
- **Appendix 7B** Expected Return, Variance, and Covariance for a Multi-index Model 123

8 Performance-Measure Approaches for Selecting Optimum Portfolios ... 125
Cheng-Few Lee, Hong-Yi Chen, and Jessica Shin-Ying Mai

8.1 Introduction ... 125
8.2 Sharpe Performance-Measure Approach with Short Sales Allowed .. 125
8.3 Treynor-Measure Approach with Short Sales Allowed .. 128
8.4 Treynor-Measure Approach with Short Sales Not Allowed ... 130
8.5 Impact of Short Sales on Optimal-Weight Determination .. 132
8.6 Economic Rationale of the Treynor Performance-Measure Method .. 132
8.7 Conclusion .. 133

References ... 133
Appendix 8A Derivation of Equation (8.6) .. 133
Appendix 8B Derivation of Equation (8.10) ... 134
Appendix 8C Derivation of Equation (8.15) ... 135

9 The Creation and Control of Speculative Bubbles in a Laboratory Setting ... 137
James S. Ang, Dean Diavatopoulos, and Thomas V. Schwarz

9.1 Introduction ... 137
9.2 Bubbles in the Asset Markets ... 139
9.3 Experimental Design ... 140
9.4 Results and Analysis .. 145
9.5 Conclusions ... 161

References ... 163

10 Portfolio Optimization Models and Mean–Variance Spanning Tests .. 165
Wei-Peng Chen, Huimin Chung, Keng-Yu Ho, and Tsui-Ling Hsu

10.1 Introduction of Markowitz Portfolio-Selection Model ... 165
10.2 Measurement of Return and Risk .. 166
10.3 Efficient Portfolio .. 166
10.4 Mean–Variance Spanning Test ... 172
10.5 Alternative Computer Program to Calculate Efficient Frontier .. 175
10.6 Conclusion .. 182

References ... 184

11 Combining Fundamental Measures for Stock Selection .. 185
Kenton K. Yee

11.1 Introduction ... 185
11.2 Bayesian Triangulation .. 187
11.3 Triangulation in Forensic Valuation ... 189
11.4 Bayesian Triangulation in Asset Pricing Settings .. 190
11.5 The Data Snooping Trap ... 194
11.6 Using Guidance from Theory to Mitigate Data Snooping ... 195
11.7 Avoiding Data-Snooping Pitfalls in Financial Statement Analysis .. 197
11.8 Conclusion ... 199

References ... 200
Appendix 11A Proof of Theorem 11.1 ... 201

11A.1 Generalization of Theorem 11.1 ... 201
16.9 Portfolio Analysis of a Two-Asset Portfolio ... 262
16.10 Mathematical Portfolio Analysis .. 265
16.11 Calculus Minimization of Risk: A Three-Security Portfolio 265
16.12 Conclusion .. 266
References .. 266

17 Portfolio Theory, CAPM and Performance Measures 267
Luis Ferruz, Fernando Gómez-Bezares, and María Vargas
17.1 Portfolio Theory and CAPM: Foundations and Current Application 267
17.2 Performance Measures Related to Portfolio Theory and the CAPM: Classic
Indices, Derivative Indices, and New Approaches .. 274
17.3 Empirical Analysis: Performance Rankings and Performance Persistence 277
17.4 Summary and Conclusions .. 280
References .. 280

18 Intertemporal Equilibrium Models, Portfolio Theory and the Capital Asset
Pricing Model .. 283
Stephen J. Brown
18.1 Introduction .. 283
18.2 Intertemporal Equilibrium Models .. 283
18.3 Relationship to Observed Security Returns ... 284
18.4 Intertemporal Equilibrium and the Capital Asset Pricing Model 285
18.5 Hansen Jagannathan Bounds .. 285
18.6 Are Stochastic Discount Factors Positive? .. 286
18.7 Conclusion .. 286
References .. 287

19 Persistence, Predictability, and Portfolio Planning 289
Michael J. Brennan and Yihong Xia
19.1 Introduction .. 289
19.2 Detecting and Exploiting Predictability .. 290
19.3 Stock Price Variation and Variation in the Expected Returns 296
19.4 Economic Significance of Predictability .. 298
19.5 Forecasts of Equity Returns ... 303
19.6 Conclusion .. 314
References .. 314
Appendix 19A The Optimal Strategy .. 315
Appendix 19B The Unconditional Strategy ... 316
Appendix 19C The Myopic Strategy ... 317
Appendix 19D The Optimal Buy-and-Hold Strategy 317

Lan-chih Ho, John Cadle, and Michael Theobald
20.1 Introduction .. 319
20.2 Theory of Alternative Portfolio Insurance Strategies 319
20.3 Empirical Comparison of Alternative Portfolio Insurance Strategies 324
20.4 Recent Market Developments ... 329
20.5 Implications for Financial Market Stability ... 331
20.6 Conclusion .. 332
References .. 332
Security Market Microstructure: The Analysis of a Non-Frictionless Market

Reto Francioni, Sonali Hazarika, Martin Reck, and Robert A. Schwartz

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1 Introduction</td>
<td>333</td>
</tr>
<tr>
<td>21.2 Microstructure’s Challenge</td>
<td>334</td>
</tr>
<tr>
<td>21.3 The Perfectly Liquid Environment of CAPM</td>
<td>335</td>
</tr>
<tr>
<td>21.4 What Microstructure Analysis Has to Offer: Personal Reflections</td>
<td>339</td>
</tr>
<tr>
<td>21.5 From Theory to Application</td>
<td>344</td>
</tr>
<tr>
<td>21.6 Deutsche Börse: The Emergence of a Modern, Electronic Market</td>
<td>345</td>
</tr>
<tr>
<td>21.7 Conclusion: The Roadmap and the Road</td>
<td>347</td>
</tr>
</tbody>
</table>

References

Appendix 21A Risk Aversion and Risk Premium Measures

- 21A.1 Risk Aversion
- 21A.2 Risk Premiums

Appendix 21B Designing Xetra

- 21B.1 Continuous Trading
- 21B.2 Call Auction Trading
- 21B.3 Electronic Trading for Less Liquid Stocks
- 21B.4 Xetra’s Implementation and the Migration of Liquidity to Xetra Since 1997

Part III Options and Option Pricing Theory

Options Strategies and Their Applications

Cheng Few Lee, John Lee, and Wei-Kang Shih

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1 Introduction</td>
<td>355</td>
</tr>
<tr>
<td>22.2 The Option Market and Related Definitions</td>
<td>355</td>
</tr>
<tr>
<td>22.3 Put-Call Parity</td>
<td>360</td>
</tr>
<tr>
<td>22.4 Risk-Return Characteristics of Options</td>
<td>363</td>
</tr>
<tr>
<td>22.5 Examples of Alternative Option Strategies</td>
<td>372</td>
</tr>
<tr>
<td>22.6 Conclusion</td>
<td>375</td>
</tr>
</tbody>
</table>

References

Option Pricing Theory and Firm Valuation

Cheng Few Lee, Joseph E. Finnerty, and Wei-Kang Shih

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1 Introduction</td>
<td>377</td>
</tr>
<tr>
<td>23.2 Basic Concepts of Options</td>
<td>377</td>
</tr>
<tr>
<td>23.3 Factors Affecting Option Value</td>
<td>380</td>
</tr>
<tr>
<td>23.4 Determining the Value of Options</td>
<td>384</td>
</tr>
<tr>
<td>23.5 Option Pricing Theory and Capital Structure</td>
<td>387</td>
</tr>
<tr>
<td>23.6 Warrants</td>
<td>390</td>
</tr>
<tr>
<td>23.7 Conclusion</td>
<td>391</td>
</tr>
</tbody>
</table>

References

Applications of the Binomial Distribution to Evaluate Call Options

Alice C. Lee, John Lee, and Jessica Shin-Ying Mai

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1 Introduction</td>
<td>393</td>
</tr>
<tr>
<td>24.2 What Is an Option?</td>
<td>393</td>
</tr>
<tr>
<td>24.3 The Simple Binomial Option Pricing Model</td>
<td>393</td>
</tr>
<tr>
<td>24.4 The Generalized Binomial Option Pricing Model</td>
<td>395</td>
</tr>
<tr>
<td>24.5 Conclusion</td>
<td>397</td>
</tr>
</tbody>
</table>

References
30 Itô’s Calculus and the Derivation of the Black–Scholes Option-Pricing Model

George Chalamandaris and A.G. Malliaris

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.1 Introduction</td>
<td>447</td>
</tr>
<tr>
<td>30.2 The ITÔ Process and Financial Modeling</td>
<td>447</td>
</tr>
<tr>
<td>30.3 ITÔ’S Lemma</td>
<td>451</td>
</tr>
<tr>
<td>30.4 Stochastic Differential-Equation Approach to Stock-price Behavior</td>
<td>452</td>
</tr>
<tr>
<td>30.5 The Pricing of an Option</td>
<td>454</td>
</tr>
<tr>
<td>30.6 A Reexamination of Option Pricing</td>
<td>455</td>
</tr>
<tr>
<td>30.7 Extending the Risk-Neutral Argument: The Martingale Approach</td>
<td>458</td>
</tr>
<tr>
<td>30.8 Remarks on Option Pricing</td>
<td>463</td>
</tr>
<tr>
<td>30.9 Conclusion</td>
<td>465</td>
</tr>
</tbody>
</table>

References

Appendix 30A An Alternative Method To Derive the Black–Scholes Option-Pricing Model

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30A.1 Assumptions and the Present Value of the Expected Terminal Option Price</td>
<td>466</td>
</tr>
<tr>
<td>30A.2 Present Value of the Partial Expectation of the Terminal Stock Price</td>
<td>467</td>
</tr>
<tr>
<td>30A.3 Present Value of the Exercise Price under Uncertainty</td>
<td>469</td>
</tr>
</tbody>
</table>

31 Constant Elasticity of Variance Option Pricing Model: Integration and Detailed Derivation

Y.L. Hsu, T.I. Lin, and C.F. Lee

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1 Introduction</td>
<td>471</td>
</tr>
<tr>
<td>31.2 The CEV Diffusion and Its Transition Probability Density Function</td>
<td>471</td>
</tr>
<tr>
<td>31.3 Review of Noncentral Chi-Square Distribution</td>
<td>473</td>
</tr>
<tr>
<td>31.4 The Noncentral Chi-square Approach to Option Pricing Model</td>
<td>474</td>
</tr>
<tr>
<td>31.5 Conclusion</td>
<td>478</td>
</tr>
</tbody>
</table>

References

Appendix 31A Proof of Feller’s Lemma

32 Stochastic Volatility Option Pricing Models

Cheng Few Lee and Jack C. Lee

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.1 Introduction</td>
<td>481</td>
</tr>
<tr>
<td>32.2 Nonclosed-Form Type of Option Pricing Model</td>
<td>481</td>
</tr>
<tr>
<td>32.3 Review of Characteristic Function</td>
<td>485</td>
</tr>
<tr>
<td>32.4 Closed-Form Type of Option Pricing Model</td>
<td>485</td>
</tr>
<tr>
<td>32.5 Conclusion</td>
<td>489</td>
</tr>
</tbody>
</table>

References

Appendix 32A The Market Price of the Risk

33 Derivations and Applications of Greek Letters: Review and Integration

Hong-Yi Chen, Cheng-Few Lee, and Weikang Shih

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.1 Introduction</td>
<td>491</td>
</tr>
<tr>
<td>33.2 Delta (Δ)</td>
<td>491</td>
</tr>
<tr>
<td>33.3 Theta (Θ)</td>
<td>494</td>
</tr>
<tr>
<td>33.4 Gamma (Γ)</td>
<td>496</td>
</tr>
<tr>
<td>33.5 Vega (v)</td>
<td>498</td>
</tr>
<tr>
<td>33.6 Rho (ρ)</td>
<td>500</td>
</tr>
<tr>
<td>33.7 Derivation of Sensitivity for Stock Options Respectively with Exercise Price</td>
<td>501</td>
</tr>
<tr>
<td>33.8 Relationship Between Delta, Theta, and Gamma</td>
<td>502</td>
</tr>
<tr>
<td>33.9 Conclusion</td>
<td>503</td>
</tr>
</tbody>
</table>

References
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>A Further Analysis of the Convergence Rates and Patterns of the Binomial Models</td>
<td>San-Lin Chung and Pai-Ta Shih</td>
</tr>
<tr>
<td></td>
<td>34.1 Brief Review of the Binomial Models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34.2 The Importance of Node Positioning for Monotonic Convergence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34.3 The Flexibility of GCRR Model for Node Positioning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34.4 Numerical Results of Various GCRR Models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34.5 Conclusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appendix 34A Extrapolation Formulas for Various GCRR Models</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Estimating Implied Probabilities from Option Prices and the Underlying</td>
<td>Bruce Mizrach</td>
</tr>
<tr>
<td></td>
<td>35.1 Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.2 Black Scholes Baseline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.3 Empirical Departures from Black Scholes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.4 Beyond Black Scholes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.5 Histogram Estimators</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.6 Tree Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.7 Local Volatility Functions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.8 PDF Approaches</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.9 Inferences from the Mixture Model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.10 Jump Processes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.11 Conclusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Are Tails Fat Enough to Explain Smile</td>
<td>Ren-Raw Chen, Oded Palmon, and John Wald</td>
</tr>
<tr>
<td></td>
<td>36.1 Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36.2 Literature Review</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36.3 The Models</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36.4 Data and Empirical Results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36.5 Conclusion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appendix 36A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36A.1 The Derivation of the Lognormal Model Under No Rebalancing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36A.2 Continuous Rebalancing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36A.3 Smoothing Techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36A.4 Results of Sub-Sample Testing</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Option Pricing and Hedging Performance Under Stochastic Volatility</td>
<td>Gurdip Bakshi, Charles Cao, and Zhiwu Chen</td>
</tr>
<tr>
<td></td>
<td>and Stochastic Interest Rates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.1 Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.2 The Option Pricing Model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.3 Data Description</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.4 Empirical Tests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.5 Conclusions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appendix 37A</td>
<td></td>
</tr>
</tbody>
</table>
38 Application of the Characteristic Function in Financial Research 575
H.W. Chuang, Y.L. Hsu, and C.F. Lee
38.1 Introduction .. 575
38.2 The Characteristic Functions .. 575
38.3 CEV Option Pricing Model .. 576
38.4 Options with Stochastic Volatility 577
38.5 Conclusion ... 581
References .. 581

39 Asian Options .. 583
Itzhak Venezia
39.1 Introduction .. 583
39.2 Valuation .. 584
39.3 Conclusion ... 586
References .. 586

40 Numerical Valuation of Asian Options with Higher Moments in the Underlying Distribution .. 587
Kehluh Wang and Ming-Feng Hsu
40.1 Introduction .. 587
40.2 Definitions and the Basic Binomial Model 588
40.3 Edgeworth Binomial Model for Asian Option Valuation 589
40.4 Upper Bound and Lower Bound for European Asian Options 591
40.5 Upper Bound and Lower Bound for American Asian Options 593
40.6 Numerical Examples ... 594
40.7 Conclusion ... 602
References .. 602

41 The Valuation of Uncertain Income Streams and the Pricing of Options 605
Mark Rubinstein
41.1 Introduction .. 605
41.2 Uncertain Income Streams: General Case 606
41.3 Uncertain Income Streams: Special Case 608
41.4 Options .. 611
41.5 Conclusion ... 613
References .. 613
Appendix 41A The Bivariate Normal Density Function 614

42 Binomial OPM, Black-Scholes OPM and Their Relationship: Decision Tree and Microsoft Excel Approach 617
John Lee
42.1 Introduction .. 617
42.2 Call and Put Options ... 617
42.3 One Period Option Pricing Model 618
42.4 Two-Period Option Pricing Model 621
42.5 Using Microsoft Excel to Create the Binomial Option Trees 622
42.6 Black-Scholes Option Pricing Model 624
42.7 Relationship Between the Binomial OPM and the Black-Scholes OPM ... 625
42.8 Decision Tree Black-Scholes Calculation 626
42.9 Conclusion ... 626
References .. 627
Appendix 42A Excel VBA Code: Binomial Option Pricing Model 627
Part IV Risk Management

43 Combinatorial Methods for Constructing Credit Risk Ratings
639
Alexander Kogan and Miguel A. Lejeune
43.1 Introduction 639
43.2 Logical Analysis of Data: An Overview 641
43.3 Absolute Creditworthiness: Credit Risk Ratings of Financial Institutions 643
43.4 Relative Creditworthiness: Country Risk Ratings 648
43.5 Conclusions 659
References 660
Appendix 43A 662

44 The Structural Approach to Modeling Credit Risk
665
Jing-zhi Huang
44.1 Introduction 665
44.2 Structural Credit Risk Models 665
44.3 Empirical Evidence 668
44.4 Conclusion 671
References 671

45 An Empirical Investigation of the Rationales for Integrated Risk-Management Behavior
675
Michael S. Pagano
45.1 Introduction 675
45.2 Theories of Risk-Management, Previous Research, and Testable Hypotheses 677
45.3 Data, Sample Selection, and Empirical Methodology 685
45.4 Empirical Results 689
45.5 Conclusion 694
References 694

46 Copula, Correlated Defaults, and Credit VaR
697
Jow-Ran Chang and An-Chi Chen
46.1 Introduction 697
46.2 Methodology 698
46.3 Experimental Results 703
46.4 Conclusion 710
References 711

47 Unspanned Stochastic Volatilities and Interest Rate Derivatives Pricing
713
Feng Zhao
47.1 Introduction 713
47.2 Term Structure Models with Spanned Stochastic Volatility 716
47.3 LIBOR Market Models with Stochastic Volatility and Jumps: Theory and Estimation 723
47.4 Nonparametric Estimation of the Forward Density 734
47.5 Conclusion 746
References 746
Appendix 47A The Derivation for QTSMs 748
Appendix 47B The Implementation of the Kalman Filter 750
Appendix 47C Derivation of the Characteristic Function 751
Catastrophic Losses and Alternative Risk Transfer Instruments

Jin-Ping Lee and Min-Teh Yu

Introduction

Catastrophe Bonds

Catastrophe Equity Puts

Catastrophe Derivatives

Reinsurance with CAT-Linked Securities

Conclusion

References

A Real Option Approach to the Comprehensive Analysis of Bank Consolidation Values

Chuang-Chang Chang, Pei-Fang Hsieh, and Hung-Neng Lai

Introduction

The Model

Case Study

Results

Conclusions

References

Appendix 49A The Correlations Between the Standard Wiener Process Generated from a Bank’s Net Interest Income

Appendix 49B The Risk-Adjusted Processes

Appendix 49C The Discrete Version of the Risk-Adjusted Process

Dynamic Econometric Loss Model: A Default Study of US Subprime Markets

C.H. Ted Hong

Introduction

Model Framework

Default Modeling

Prepayment Modeling

Delinquency Study

Conclusion

References

Appendix 50A Default and Prepayment Definition

Appendix 50B General Model Framework

Appendix 50C Default Specification

Appendix 50D Prepayment Specification

The Effect of Default Risk on Equity Liquidity: Evidence Based on the Panel Threshold Model

Huimin Chung, Wei-Peng Chen, and Yu-Dan Chen

Introduction

Data and Methodology

Empirical Results

Conclusion

References

Appendix 51A

Put Option Approach to Determine Bank Risk Premium

Dar Yeh Hwang, Fu-Shuen Shie, and Wei-Hsiung Wu

Introduction

Evaluating Insurer’s Liability by Option Pricing Model: Merton (1977)

Extensions of Merton (1977)

Applications for Merton (1977)
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>The Sensitivity of Corporate Bond Volatility to Macroeconomic</td>
<td>Nikolay Kosturov and Duane</td>
<td>883</td>
</tr>
<tr>
<td></td>
<td>Announcements</td>
<td>Stock</td>
<td></td>
</tr>
<tr>
<td>58.1</td>
<td>Introduction</td>
<td></td>
<td>883</td>
</tr>
<tr>
<td>58.2</td>
<td>Theory and Hypotheses</td>
<td></td>
<td>884</td>
</tr>
<tr>
<td>58.3</td>
<td>Data and Return Computations</td>
<td></td>
<td>886</td>
</tr>
<tr>
<td>58.4</td>
<td>Descriptive Statistics of Daily Excess Returns</td>
<td></td>
<td>886</td>
</tr>
<tr>
<td>58.5</td>
<td>OLS Regressions of Volatility and Excess Returns</td>
<td></td>
<td>897</td>
</tr>
<tr>
<td>58.6</td>
<td>Conditional Variance Models</td>
<td></td>
<td>899</td>
</tr>
<tr>
<td>58.7</td>
<td>Alternative GARCH Models</td>
<td></td>
<td>903</td>
</tr>
<tr>
<td>58.8</td>
<td>Conclusion</td>
<td></td>
<td>910</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>912</td>
</tr>
<tr>
<td></td>
<td>Appendix 58A</td>
<td></td>
<td>913</td>
</tr>
<tr>
<td>59</td>
<td>Raw Material Convenience Yields and Business Cycle</td>
<td>Chang-Wen Duan and William T.</td>
<td>915</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lin</td>
<td></td>
</tr>
<tr>
<td>59.1</td>
<td>Introduction</td>
<td></td>
<td>915</td>
</tr>
<tr>
<td>59.2</td>
<td>Characteristics of Study Commodities</td>
<td></td>
<td>917</td>
</tr>
<tr>
<td>59.3</td>
<td>The Model</td>
<td></td>
<td>919</td>
</tr>
<tr>
<td>59.4</td>
<td>Data</td>
<td></td>
<td>921</td>
</tr>
<tr>
<td>59.5</td>
<td>Empirical Results</td>
<td></td>
<td>922</td>
</tr>
<tr>
<td>59.6</td>
<td>Conclusion</td>
<td></td>
<td>930</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>931</td>
</tr>
<tr>
<td>60</td>
<td>Alternative Methods to Determine Optimal Capital Structure:</td>
<td>Sheng-Syan Chen, Cheng-Few</td>
<td>933</td>
</tr>
<tr>
<td></td>
<td>Theory and Application</td>
<td>Lee, and Han-Hsing Lee</td>
<td></td>
</tr>
<tr>
<td>60.1</td>
<td>Introduction</td>
<td></td>
<td>933</td>
</tr>
<tr>
<td>60.2</td>
<td>The Traditional Theory of Optimal Capital Structure</td>
<td></td>
<td>934</td>
</tr>
<tr>
<td>60.3</td>
<td>Optimal Capital Structure in the Contingent Claims Framework</td>
<td></td>
<td>936</td>
</tr>
<tr>
<td>60.4</td>
<td>Recent Development of Capital Structure Models</td>
<td></td>
<td>941</td>
</tr>
<tr>
<td>60.5</td>
<td>Application and Empirical Evidence of Capital Structure Models</td>
<td></td>
<td>948</td>
</tr>
<tr>
<td>60.6</td>
<td>Conclusion</td>
<td></td>
<td>950</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>950</td>
</tr>
<tr>
<td>61</td>
<td>Actuarial Mathematics and Its Applications in Quantitative Finance</td>
<td>Cho-Jieh Chen</td>
<td>953</td>
</tr>
<tr>
<td>61.1</td>
<td>Introduction</td>
<td></td>
<td>953</td>
</tr>
<tr>
<td>61.2</td>
<td>Actuarial Discount and Accumulation Functions</td>
<td></td>
<td>953</td>
</tr>
<tr>
<td>61.3</td>
<td>Actuarial Mathematics of Insurance</td>
<td></td>
<td>955</td>
</tr>
<tr>
<td>61.4</td>
<td>Actuarial Mathematics of Annuity</td>
<td></td>
<td>958</td>
</tr>
<tr>
<td>61.5</td>
<td>Actuarial Premiums and Actuarial Reserves</td>
<td></td>
<td>959</td>
</tr>
<tr>
<td>61.6</td>
<td>Applications in Quantitative Finance</td>
<td></td>
<td>961</td>
</tr>
<tr>
<td>61.7</td>
<td>Conclusion</td>
<td></td>
<td>963</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>963</td>
</tr>
<tr>
<td>62</td>
<td>The Prediction of Default with Outliers: Robust Logistic Regression</td>
<td>Chung-Hua Shen, Yi-Kai Chen,</td>
<td>965</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bor-Yi Huang</td>
<td></td>
</tr>
<tr>
<td>62.1</td>
<td>Introduction</td>
<td></td>
<td>965</td>
</tr>
<tr>
<td>62.2</td>
<td>Literature Review of Outliers in Conventional and in Logit Regression</td>
<td></td>
<td>966</td>
</tr>
<tr>
<td>62.3</td>
<td>Five Validation Tests</td>
<td></td>
<td>967</td>
</tr>
<tr>
<td>62.4</td>
<td>Source of Data and Empirical Model</td>
<td></td>
<td>969</td>
</tr>
<tr>
<td>62.5</td>
<td>Empirical Results</td>
<td></td>
<td>969</td>
</tr>
<tr>
<td>62.6</td>
<td>Conclusion</td>
<td></td>
<td>973</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>976</td>
</tr>
</tbody>
</table>
63 Term Structure of Default-Free and Defaultable Securities: Theory and Empirical Evidence
Hai Lin and Chunchi Wu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.1 Introduction</td>
<td>979</td>
</tr>
<tr>
<td>63.2 Definitions and Notations</td>
<td>980</td>
</tr>
<tr>
<td>63.3 Bond Pricing in Dynamic Term Structure Model Framework</td>
<td>980</td>
</tr>
<tr>
<td>63.4 Dynamic Term Structure Models</td>
<td>981</td>
</tr>
<tr>
<td>63.5 Models of Defaultable Bonds</td>
<td>988</td>
</tr>
<tr>
<td>63.6 Interest Rate and Credit Default Swaps</td>
<td>996</td>
</tr>
<tr>
<td>63.7 Concluding Remarks</td>
<td>1001</td>
</tr>
</tbody>
</table>

References | 1001 |

64 Liquidity Risk and Arbitrage Pricing Theory
Umut Çetin, Robert A. Jarrow, and Philip Protter

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.1 Introduction</td>
<td>1007</td>
</tr>
<tr>
<td>64.2 The Model</td>
<td>1009</td>
</tr>
<tr>
<td>64.3 The Extended First Fundamental Theorem</td>
<td>1011</td>
</tr>
<tr>
<td>64.4 The Extended Second Fundamental Theorem</td>
<td>1012</td>
</tr>
<tr>
<td>64.5 Example (Extended Black–Scholes Economy)</td>
<td>1015</td>
</tr>
<tr>
<td>64.6 Discontinuous Supply Curve Evolutions</td>
<td>1016</td>
</tr>
<tr>
<td>64.7 Conclusion</td>
<td>1017</td>
</tr>
</tbody>
</table>

References | 1017 |

Appendix 64A | 1018 |

65 An Integrated Model of Debt Issuance, Refunding, and Maturity
Manak C. Gupta and Alice C. Lee

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>65.1 Introduction</td>
<td>1025</td>
</tr>
<tr>
<td>65.2 The Model</td>
<td>1026</td>
</tr>
<tr>
<td>65.3 Operationalizing the Model</td>
<td>1029</td>
</tr>
<tr>
<td>65.4 Numerical Illustration</td>
<td>1032</td>
</tr>
<tr>
<td>65.5 Conclusions</td>
<td>1036</td>
</tr>
</tbody>
</table>

References | 1037 |

Part V Theory, Methodology, and Applications

66 Business Models: Applications to Capital Budgeting, Equity Value, and Return Attribution
Thomas S. Y. Ho and Sang Bin Lee

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.1 Introduction</td>
<td>1041</td>
</tr>
<tr>
<td>66.2 The Model Assumptions</td>
<td>1042</td>
</tr>
<tr>
<td>66.3 Simulation Results of the Capital Budgeting Decisions</td>
<td>1045</td>
</tr>
<tr>
<td>66.4 Relative Valuation of Equity</td>
<td>1048</td>
</tr>
<tr>
<td>66.5 Equity Return Attribution</td>
<td>1050</td>
</tr>
<tr>
<td>66.6 Conclusion</td>
<td>1051</td>
</tr>
</tbody>
</table>

References | 1051 |

Appendix 66A Derivation of the Risk Neutral Probability | 1052 |
Appendix 66B The Model for the Fixed Operating Cost at Time T | 1052 |
Appendix 66C The Valuation Model Using the Recombining Lattice | 1053 |
Appendix 66D Input Data of the Model | 1054 |
Dividends Versus Reinvestments in Continuous Time: A More General Model

Ren-Raw Chen, Ben Logan, Oded Palmon, and Larry Shepp

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.1 Introduction</td>
<td>1055</td>
</tr>
<tr>
<td>67.2 The Model</td>
<td>1055</td>
</tr>
<tr>
<td>67.3 The Solution</td>
<td>1057</td>
</tr>
<tr>
<td>67.4 Expected Bankruptcy Time</td>
<td>1058</td>
</tr>
<tr>
<td>67.5 Further Remarks</td>
<td>1059</td>
</tr>
<tr>
<td>67.6 Conclusion</td>
<td>1059</td>
</tr>
<tr>
<td>References</td>
<td>1060</td>
</tr>
</tbody>
</table>

Segmenting Financial Services Market: An Empirical Study of Statistical and Non-parametric Methods

Kenneth Lawrence, Dinesh Pai, Ronald Klimberg, Stephen Kudbya, and Sheila Lawrence

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.1 Introduction</td>
<td>1061</td>
</tr>
<tr>
<td>68.2 Methodology</td>
<td>1062</td>
</tr>
<tr>
<td>68.3 Evaluating the Classification Function</td>
<td>1064</td>
</tr>
<tr>
<td>68.4 Experimental Design</td>
<td>1065</td>
</tr>
<tr>
<td>68.5 Results</td>
<td>1065</td>
</tr>
<tr>
<td>68.6 Conclusions</td>
<td>1066</td>
</tr>
<tr>
<td>References</td>
<td>1066</td>
</tr>
</tbody>
</table>

Spurious Regression and Data Mining in Conditional Asset Pricing Models

Wayne Ferson, Sergei Sarkissian, and Timothy Simin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>69.1 Introduction</td>
<td>1067</td>
</tr>
<tr>
<td>69.2 Spurious Regression and Data Mining in Predictive Regressions</td>
<td>1068</td>
</tr>
<tr>
<td>69.3 Spurious Regression, Data Mining, and Conditional Asset Pricing</td>
<td>1069</td>
</tr>
<tr>
<td>69.4 The Data</td>
<td>1069</td>
</tr>
<tr>
<td>69.5 The Models</td>
<td>1071</td>
</tr>
<tr>
<td>69.6 Results for Predictive Regressions</td>
<td>1073</td>
</tr>
<tr>
<td>69.7 Results for Conditional Asset Pricing Models</td>
<td>1080</td>
</tr>
<tr>
<td>69.8 Solutions to the Problems of Spurious Regression and Data Mining</td>
<td>1086</td>
</tr>
<tr>
<td>69.9 Robustness of the Asset Pricing Results</td>
<td>1087</td>
</tr>
<tr>
<td>69.10 Conclusions</td>
<td>1088</td>
</tr>
<tr>
<td>References</td>
<td>1089</td>
</tr>
</tbody>
</table>

Issues Related to the Errors-in-Variables Problems in Asset Pricing Tests

Dongcheol Kim

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.1 Introduction</td>
<td>1091</td>
</tr>
<tr>
<td>70.2 The Errors-in-Variables Problem</td>
<td>1092</td>
</tr>
<tr>
<td>70.3 A Correction for the Errors-in-Variables Bias</td>
<td>1094</td>
</tr>
<tr>
<td>70.4 Results</td>
<td>1099</td>
</tr>
<tr>
<td>70.5 Conclusions</td>
<td>1108</td>
</tr>
<tr>
<td>References</td>
<td>1108</td>
</tr>
</tbody>
</table>

McMC Estimation of Multiscale Stochastic Volatility Models

German Molina, Chuan-Hsiang Han, and Jean-Pierre Fouque

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.1 Introduction</td>
<td>1109</td>
</tr>
<tr>
<td>71.2 Multiscale Modeling and McMC Estimation</td>
<td>1110</td>
</tr>
<tr>
<td>71.3 Simulation Study</td>
<td>1113</td>
</tr>
<tr>
<td>71.4 Empirical Application: FX Data</td>
<td>1113</td>
</tr>
<tr>
<td>71.5 Implication on Derivatives Pricing and Hedging</td>
<td>1118</td>
</tr>
</tbody>
</table>
77 Application of Fuzzy Set Theory to Finance Research: Method and Application

Shin-Yun Wang and Cheng Few Lee

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>77.1 Introduction</td>
<td>1183</td>
</tr>
<tr>
<td>77.2 Fuzzy Set</td>
<td>1184</td>
</tr>
<tr>
<td>77.3 Applications of Fuzzy Set Theory</td>
<td>1190</td>
</tr>
<tr>
<td>77.4 An Example of Fuzzy Binomial OPM</td>
<td>1194</td>
</tr>
<tr>
<td>77.5 An Example of Real Options</td>
<td>1196</td>
</tr>
<tr>
<td>77.6 Fuzzy Regression</td>
<td>1197</td>
</tr>
<tr>
<td>77.7 Conclusion</td>
<td>1198</td>
</tr>
</tbody>
</table>

References | 1199 |

78 Hedonic Regression Analysis in Real Estate Markets: A Primer

Ben J. Sopranzetti

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>78.1 Introduction</td>
<td>1201</td>
</tr>
<tr>
<td>78.2 The Theoretical Foundation</td>
<td>1201</td>
</tr>
<tr>
<td>78.3 The Data</td>
<td>1202</td>
</tr>
<tr>
<td>78.4 The Linear Model</td>
<td>1202</td>
</tr>
<tr>
<td>78.5 Empirical Specification</td>
<td>1203</td>
</tr>
<tr>
<td>78.6 The Semi-Log Model</td>
<td>1204</td>
</tr>
<tr>
<td>78.7 The Box-Cox Model</td>
<td>1205</td>
</tr>
<tr>
<td>78.8 Problems with Hedonic Modeling</td>
<td>1205</td>
</tr>
<tr>
<td>78.9 Recent Developments</td>
<td>1206</td>
</tr>
<tr>
<td>78.10 Conclusion</td>
<td>1207</td>
</tr>
</tbody>
</table>

References | 1207 |

79 Numerical Solutions of Financial Partial Differential Equations

Gang Nathan Dong

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.1 Introduction</td>
<td>1209</td>
</tr>
<tr>
<td>79.2 The Model</td>
<td>1209</td>
</tr>
<tr>
<td>79.3 Discretization</td>
<td>1210</td>
</tr>
<tr>
<td>79.4 Finite Difference</td>
<td>1210</td>
</tr>
<tr>
<td>79.5 Finite Volume</td>
<td>1217</td>
</tr>
<tr>
<td>79.6 Finite Element</td>
<td>1218</td>
</tr>
<tr>
<td>79.7 Empirical Result</td>
<td>1219</td>
</tr>
<tr>
<td>79.8 Conclusion</td>
<td>1220</td>
</tr>
</tbody>
</table>

References | 1220 |

Further Reading | 1221 |

80 A Primer on the Implicit Financing Assumptions of Traditional Capital Budgeting Approaches

Ivan E. Brick and Daniel G. Weaver

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.1 Introduction</td>
<td>1223</td>
</tr>
<tr>
<td>80.2 Textbook Approaches to NPV</td>
<td>1224</td>
</tr>
<tr>
<td>80.3 Theoretical Valuation of Cash Flows</td>
<td>1226</td>
</tr>
<tr>
<td>80.4 An Example</td>
<td>1228</td>
</tr>
<tr>
<td>80.5 Personal Tax and Miller Equilibrium</td>
<td>1229</td>
</tr>
<tr>
<td>80.6 Conclusion</td>
<td>1231</td>
</tr>
</tbody>
</table>

References | 1232 |

81 Determinants of Flows into U.S.-Based International Mutual Funds

Dilip K. Patro

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.1 Introduction</td>
<td>1235</td>
</tr>
<tr>
<td>81.2 Motivation and Hypotheses</td>
<td>1236</td>
</tr>
</tbody>
</table>
81.3 Data ... 1237
81.4 Methodology and Empirical Results ... 1238
81.5 Conclusion ... 1247
References .. 1253
Appendix 81A Econometric Analysis of Panel Data ... 1253

82 Predicting Bond Yields Using Defensive Forecasting 1257
Glenn Shafer and Samuel Ring
82.1 Introduction ... 1257
82.2 Game-Theoretic Probability ... 1260
82.3 Defensive Forecasting ... 1265
82.4 Predicting Bond Yields ... 1269
82.5 Conclusion ... 1271
References .. 1271

83 Range Volatility Models and Their Applications in Finance 1273
Ray Yeutien Chou, Hengchih Chou, and Nathan Liu
83.1 Introduction ... 1273
83.2 The Price Range Estimators .. 1274
83.3 The Range-Based Volatility Models .. 1276
83.4 The Realized Range Volatility .. 1278
83.5 The Financial Applications and Limitations of the Range Volatility 1279
83.6 Conclusion ... 1279
References .. 1280

84 Examining the Impact of the U.S. IT Stock Market on Other IT Stock Markets .. 1283
Zhuo Qiao, Venus Khim-Sen Liew, and Wing-Keung Wong
84.1 Introduction ... 1283
84.2 Data and Methodology .. 1284
84.3 Empirical Results .. 1285
84.4 Conclusions .. 1289
References .. 1289
Appendix 84A .. 1290

85 Application of Alternative ODE in Finance and Economics Research 1293
Cheng-Few Lee and Junmin Shi
85.1 Introduction ... 1293
85.2 Ordinary Differential Equation .. 1294
85.3 Applications of ODE in Deterministic System ... 1295
85.4 Applications of ODE in Stochastic System .. 1297
85.5 Conclusion ... 1300
References .. 1300

86 Application of Simultaneous Equation in Finance Research 1301
Carl R. Chen and Cheng Few Lee
86.1 Introduction ... 1301
86.2 Two-Stage and Three-Stage Least Squares Method 1302
86.3 Application of Simultaneous Equation in Finance Research 1305
86.4 Conclusion ... 1305
References .. 1306
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td>The Fuzzy Set and Data Mining Applications in Accounting and Finance</td>
<td>Wikil Kwak, Yong Shi, and Cheng-Few Lee</td>
<td>1307</td>
</tr>
<tr>
<td>87.1</td>
<td>Introduction</td>
<td></td>
<td>1307</td>
</tr>
<tr>
<td>87.2</td>
<td>A Fuzzy Approach to International Transfer Pricing</td>
<td></td>
<td>1307</td>
</tr>
<tr>
<td>87.3</td>
<td>A Fuzzy Set Approach to Human Resource Allocation of a CPA Firm</td>
<td></td>
<td>1312</td>
</tr>
<tr>
<td>87.4</td>
<td>A Fuzzy Set Approach to Accounting Information System Selection</td>
<td></td>
<td>1316</td>
</tr>
<tr>
<td>87.5</td>
<td>Fuzzy Set Formulation to Capital Budgeting</td>
<td></td>
<td>1319</td>
</tr>
<tr>
<td>87.6</td>
<td>A Data Mining Approach to Firm Bankruptcy Predictions</td>
<td></td>
<td>1324</td>
</tr>
<tr>
<td>87.7</td>
<td>Conclusion</td>
<td></td>
<td>1329</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>1329</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>Forecasting S&P 100 Volatility: The Incremental Information Content of Implied Volatilities and High-Frequency Index Returns</td>
<td>Bevan J. Blair, Ser-Huang Poon, and Stephen J. Taylor</td>
<td>1333</td>
</tr>
<tr>
<td>88.1</td>
<td>Introduction</td>
<td></td>
<td>1333</td>
</tr>
<tr>
<td>88.2</td>
<td>Data</td>
<td></td>
<td>1334</td>
</tr>
<tr>
<td>88.3</td>
<td>Methodology for Forecasting Volatility</td>
<td></td>
<td>1336</td>
</tr>
<tr>
<td>88.4</td>
<td>Results</td>
<td></td>
<td>1338</td>
</tr>
<tr>
<td>88.5</td>
<td>Conclusion</td>
<td></td>
<td>1343</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>1344</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>Detecting Structural Instability in Financial Time Series</td>
<td>Derann Hsu</td>
<td>1345</td>
</tr>
<tr>
<td>89.1</td>
<td>Introduction</td>
<td></td>
<td>1345</td>
</tr>
<tr>
<td>89.2</td>
<td>Genesis of the Literature</td>
<td></td>
<td>1345</td>
</tr>
<tr>
<td>89.3</td>
<td>Problems of Multiple Change Points</td>
<td></td>
<td>1347</td>
</tr>
<tr>
<td>89.4</td>
<td>Here Came the GARCH and Its Brethrens</td>
<td></td>
<td>1348</td>
</tr>
<tr>
<td>89.5</td>
<td>Examples of Structural Shift Analysis in Financial Time Series</td>
<td></td>
<td>1349</td>
</tr>
<tr>
<td>89.6</td>
<td>Implications of Structural Instability to Financial Theories and Practice</td>
<td></td>
<td>1352</td>
</tr>
<tr>
<td>89.7</td>
<td>Direction of Future Research and Developments</td>
<td></td>
<td>1353</td>
</tr>
<tr>
<td>89.8</td>
<td>Epilogue</td>
<td></td>
<td>1354</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>1354</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>The Instrument Variable Approach to Correct for Endogeneity in Finance</td>
<td>Chia-Jane Wang</td>
<td>1357</td>
</tr>
<tr>
<td>90.1</td>
<td>Introduction</td>
<td></td>
<td>1357</td>
</tr>
<tr>
<td>90.2</td>
<td>Endogeneity: The Statistical Issue</td>
<td></td>
<td>1358</td>
</tr>
<tr>
<td>90.3</td>
<td>Instrumental Variables Approach to Endogeneity</td>
<td></td>
<td>1358</td>
</tr>
<tr>
<td>90.4</td>
<td>Validity of Instrumental Variables</td>
<td></td>
<td>1361</td>
</tr>
<tr>
<td>90.5</td>
<td>Identification and Inferences with Weak Instruments</td>
<td></td>
<td>1364</td>
</tr>
<tr>
<td>90.6</td>
<td>Empirical Applications in Corporate Finance</td>
<td></td>
<td>1366</td>
</tr>
<tr>
<td>90.7</td>
<td>Conclusion</td>
<td></td>
<td>1368</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>1368</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>Bayesian Inference of Financial Models Using MCMC Algorithms</td>
<td>Xianghua Liu, Liuling Li, and Hiroki Tsurumi</td>
<td>1371</td>
</tr>
<tr>
<td>91.1</td>
<td>Introduction</td>
<td></td>
<td>1371</td>
</tr>
<tr>
<td>91.2</td>
<td>Bayesian Inference and MCMC Algorithms</td>
<td></td>
<td>1371</td>
</tr>
<tr>
<td>91.3</td>
<td>CKLS Model with ARMA-GARCH Errors</td>
<td></td>
<td>1374</td>
</tr>
<tr>
<td>91.4</td>
<td>Copula Model for FTSE100 and S&P500</td>
<td></td>
<td>1376</td>
</tr>
<tr>
<td>91.5</td>
<td>Conclusion</td>
<td></td>
<td>1379</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>1380</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>92</td>
<td>On Capital Structure and Entry Deterrence</td>
<td>Fathali Firoozi and Donald Lien</td>
<td>1381</td>
</tr>
<tr>
<td>92.1</td>
<td>Introduction</td>
<td></td>
<td>1381</td>
</tr>
<tr>
<td>92.2</td>
<td>The Setting</td>
<td></td>
<td>1382</td>
</tr>
<tr>
<td>92.3</td>
<td>Equilibrium</td>
<td></td>
<td>1384</td>
</tr>
<tr>
<td>92.4</td>
<td>Capital Structure and Entry Deterrence</td>
<td></td>
<td>1386</td>
</tr>
<tr>
<td>92.5</td>
<td>Conclusion</td>
<td></td>
<td>1388</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>1389</td>
</tr>
<tr>
<td>93</td>
<td>VAR Models: Estimation, Inferences, and Applications</td>
<td>Yangru Wu and Xing Zhou</td>
<td>1391</td>
</tr>
<tr>
<td>93.1</td>
<td>Introduction</td>
<td></td>
<td>1391</td>
</tr>
<tr>
<td>93.2</td>
<td>A Brief Discussion of VAR Models</td>
<td></td>
<td>1391</td>
</tr>
<tr>
<td>93.3</td>
<td>Applications of VARs in Finance</td>
<td></td>
<td>1393</td>
</tr>
<tr>
<td>93.4</td>
<td>Conclusion</td>
<td></td>
<td>1397</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>1397</td>
</tr>
<tr>
<td>94</td>
<td>Signaling Models and Product Market Games in Finance: Do We Know What We Know?</td>
<td>Kose John and Anant K. Sundaram</td>
<td>1399</td>
</tr>
<tr>
<td>94.1</td>
<td>Introduction</td>
<td></td>
<td>1399</td>
</tr>
<tr>
<td>94.2</td>
<td>Supermodularity: Definitions</td>
<td></td>
<td>1400</td>
</tr>
<tr>
<td>94.3</td>
<td>Supermodularity in Signaling Models</td>
<td></td>
<td>1400</td>
</tr>
<tr>
<td>94.4</td>
<td>Supermodularity in Product Market Games</td>
<td></td>
<td>1403</td>
</tr>
<tr>
<td>94.5</td>
<td>Empirical Evidence</td>
<td></td>
<td>1406</td>
</tr>
<tr>
<td>94.6</td>
<td>Conclusion</td>
<td></td>
<td>1407</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>1407</td>
</tr>
<tr>
<td>95</td>
<td>Estimation of Short- and Long-Term VaR for Long-Memory Stochastic Volatility Models</td>
<td>Hwai-Chung Ho and Fang-I Liu</td>
<td>1409</td>
</tr>
<tr>
<td>95.1</td>
<td>Introduction</td>
<td></td>
<td>1409</td>
</tr>
<tr>
<td>95.2</td>
<td>Long Memory in Stochastic Volatility</td>
<td></td>
<td>1410</td>
</tr>
<tr>
<td>95.3</td>
<td>VaR Calculation</td>
<td></td>
<td>1411</td>
</tr>
<tr>
<td>95.4</td>
<td>Conclusions</td>
<td></td>
<td>1414</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>1414</td>
</tr>
<tr>
<td>96</td>
<td>Time Series Modeling and Forecasting of the Volatilities of Asset Returns</td>
<td>Tze Leung Lai and Haipeng Xing</td>
<td>1417</td>
</tr>
<tr>
<td>96.1</td>
<td>Introduction</td>
<td></td>
<td>1417</td>
</tr>
<tr>
<td>96.2</td>
<td>Conditional Heteroskedasticity Models</td>
<td></td>
<td>1417</td>
</tr>
<tr>
<td>96.3</td>
<td>Regime-Switching, Change-Point and Spline-GARCH Models of Volatility</td>
<td></td>
<td>1421</td>
</tr>
<tr>
<td>96.4</td>
<td>Multivariate Volatility Models and Applications to Mean-Variance Portfolio Optimization</td>
<td></td>
<td>1424</td>
</tr>
<tr>
<td>96.5</td>
<td>Conclusion</td>
<td></td>
<td>1425</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>1425</td>
</tr>
<tr>
<td>97</td>
<td>Listing Effects and the Private Company Discount in Bank Acquisitions</td>
<td>Atul Gupta and Lalatendu Misra</td>
<td>1427</td>
</tr>
<tr>
<td>97.1</td>
<td>Introduction</td>
<td></td>
<td>1427</td>
</tr>
<tr>
<td>97.2</td>
<td>Why Acquiring Firms May Pay Less for Unlisted Targets</td>
<td></td>
<td>1428</td>
</tr>
<tr>
<td>97.3</td>
<td>Sample Characteristics</td>
<td></td>
<td>1430</td>
</tr>
<tr>
<td>97.4</td>
<td>Event Study Analysis</td>
<td></td>
<td>1431</td>
</tr>
<tr>
<td>97.5</td>
<td>Findings Based on Multiples</td>
<td></td>
<td>1432</td>
</tr>
</tbody>
</table>
106 Arbitrage Detection from Stock Data: An Empirical Study 1577
Cheng-Der Fuh and Szu-Yu Pai
106.1 Introduction ... 1577
106.2 Arbitrage Detection: Volatility Change ... 1579
106.3 Arbitrage Detection: Mean Change .. 1583
106.4 Empirical Studies ... 1586
106.5 Conclusions and Further Researches ... 1590
References .. 1591

107 Detecting Corporate Failure .. 1593
Yanzhi Wang, Lin Lin, Hsien-Chang Kuo, and Jenifer Piesse
107.1 Introduction ... 1593
107.2 The Possible Causes of Bankruptcy .. 1594
107.3 The Methods of Bankruptcy .. 1594
107.4 Prediction Model for Corporate Failure 1596
107.5 The Selection of Optimal Cutoff Point 1603
107.6 Recent Development ... 1604
107.7 Conclusion ... 1604
References .. 1604

108 Genetic Programming for Option Pricing .. 1607
N.K. Chidambaran
108.1 Introduction ... 1607
108.2 Genetic Program Elements ... 1608
108.3 Black–Scholes Example ... 1611
108.4 Extensions ... 1613
108.5 Conclusion ... 1613
References ... 1614

109 A Constant Elasticity of Variance (CEV) Family of Stock
Price Distributions in Option Pricing, Review, and Integration 1615
Ren-Raw Chen and Cheng-Few Lee
109.1 Introduction ... 1615
109.2 The CEV Diffusion and Its Transition Density 1616
109.3 The CEV Option Pricing Models ... 1619
109.4 Computing the Non-Central Chi-Square Probabilities 1622
109.5 Conclusion ... 1623
Appendix 109A ... 1623
References ... 1625

References .. 1627

Author Index .. 1685

Subject Index ... 1709
Handbook of Quantitative Finance and Risk Management
Lee, C.-F.; Lee, J. (Eds.)
2010, CXIV, 1716 p. In 3 volumes, not available separately., Hardcover
ISBN: 978-0-387-77116-8