4 Transformations .. 49
4.1 Variance-Stabilizing Transformations 50
4.2 Examples ... 51
4.3 Bias Correction of the VST 54
4.4 Symmetrizing Transformations 57
4.5 VST or Symmetrizing Transform? 59
4.6 Exercises ... 59
References .. 61

5 More General Central Limit Theorems 63
5.1 The Independent Not IID Case and a Key Example 63
5.2 CLT without a Variance 66
5.3 Combinatorial CLT 67
5.4 CLT for Exchangeable Sequences 68
5.5 CLT for a Random Number of Summands 70
5.6 Infinite Divisibility and Stable Laws 71
5.7 Exercises ... 77
References .. 80

6 Moment Convergence and Uniform Integrability 83
6.1 Basic Results .. 83
6.2 The Moment Problem 85
6.3 Exercises ... 88
References .. 89

7 Sample Percentiles and Order Statistics 91
7.1 Asymptotic Distribution of One Order Statistic 92
7.2 Joint Asymptotic Distribution of Several Order Statistics .. 93
7.3 Bahadur Representations 94
7.4 Confidence Intervals for Quantiles 96
7.5 Regression Quantiles 97
7.6 Exercises ... 98
References .. 100

8 Sample Extremes 101
8.1 Sufficient Conditions 101
8.2 Characterizations 105
8.3 Limiting Distribution of the Sample Range 107
8.4 Multiplicative Strong Law 108
8.5 Additive Strong Law 109

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>8.6 Dependent Sequences</td>
</tr>
<tr>
<td>114</td>
<td>8.7 Exercises</td>
</tr>
<tr>
<td>116</td>
<td>References</td>
</tr>
<tr>
<td>119</td>
<td>9 Central Limit Theorems for Dependent Sequences</td>
</tr>
<tr>
<td>119</td>
<td>9.1 Stationary m-dependence</td>
</tr>
<tr>
<td>121</td>
<td>9.2 Sampling without Replacement</td>
</tr>
<tr>
<td>123</td>
<td>9.3 Martingales and Examples</td>
</tr>
<tr>
<td>126</td>
<td>9.4 The Martingale and Reverse Martingale CLTs</td>
</tr>
<tr>
<td>127</td>
<td>9.5 Exercises</td>
</tr>
<tr>
<td>129</td>
<td>References</td>
</tr>
<tr>
<td>131</td>
<td>10 Central Limit Theorem for Markov Chains</td>
</tr>
<tr>
<td>131</td>
<td>10.1 Notation and Basic Definitions</td>
</tr>
<tr>
<td>132</td>
<td>10.2 Normal Limits</td>
</tr>
<tr>
<td>135</td>
<td>10.3 Nonnormal Limits</td>
</tr>
<tr>
<td>135</td>
<td>10.4 Convergence to Stationarity: Diaconis-Stroock-Fill Bound</td>
</tr>
<tr>
<td>137</td>
<td>10.5 Exercises</td>
</tr>
<tr>
<td>139</td>
<td>References</td>
</tr>
<tr>
<td>141</td>
<td>11 Accuracy of Central Limit Theorems</td>
</tr>
<tr>
<td>142</td>
<td>11.1 Uniform Bounds: Berry-Esseen Inequality</td>
</tr>
<tr>
<td>144</td>
<td>11.2 Local Bounds</td>
</tr>
<tr>
<td>145</td>
<td>11.3 The Multidimensional Berry-Esseen Theorems</td>
</tr>
<tr>
<td>146</td>
<td>11.4 Other Statistics</td>
</tr>
<tr>
<td>147</td>
<td>11.5 Exercises</td>
</tr>
<tr>
<td>149</td>
<td>References</td>
</tr>
<tr>
<td>151</td>
<td>12 Invariance Principles</td>
</tr>
<tr>
<td>152</td>
<td>12.1 Motivating Examples</td>
</tr>
<tr>
<td>153</td>
<td>12.2 Two Relevant Gaussian Processes</td>
</tr>
<tr>
<td>156</td>
<td>12.3 The Erdős-Kac Invariance Principle</td>
</tr>
<tr>
<td>157</td>
<td>12.4 Invariance Principles, Donsker’s Theorem, and the KMT Construction</td>
</tr>
<tr>
<td>161</td>
<td>12.5 Invariance Principle for Empirical Processes</td>
</tr>
<tr>
<td>163</td>
<td>12.6 Extensions of Donsker’s Principle and Vapnik-Chervonenkis Classes</td>
</tr>
<tr>
<td>164</td>
<td>12.7 Glivenko-Cantelli Theorem for VC Classes</td>
</tr>
<tr>
<td>167</td>
<td>12.8 CLTs for Empirical Measures and Applications</td>
</tr>
<tr>
<td>168</td>
<td>12.8.1 Notation and Formulation</td>
</tr>
<tr>
<td>169</td>
<td>12.8.2 Entropy Bounds and Specific CLTs</td>
</tr>
</tbody>
</table>
Contents

12.9 Dependent Sequences: Martingales, Mixing, and Short-Range Dependence 172
12.10 Weighted Empirical Processes and Approximations 175
12.11 Exercises .. 178
References .. 180

13 Edgeworth Expansions and Cumulants 185
13.1 Expansion for Means 186
13.2 Using the Edgeworth Expansion 188
13.3 Edgeworth Expansion for Sample Percentiles 189
13.4 Edgeworth Expansion for the t-statistic 190
13.5 Cornish-Fisher Expansions 192
13.6 Cumulants and Fisher’s k-statistics 194
13.7 Exercises .. 198
References .. 200

14 Saddlepoint Approximations 203
14.1 Approximate Evaluation of Integrals 204
14.2 Density of Means and Exponential Tilting 208
 14.2.1 Derivation by Edgeworth Expansion and Exponential Tilting .. 210
14.3 Some Examples .. 211
14.4 Application to Exponential Family and the Magic Formula .. 213
14.5 Tail Area Approximation and the Lugannani-Rice Formula .. 213
14.6 Edgeworth vs. Saddlepoint vs. Chi-square Approximation .. 217
14.7 Tail Areas for Sample Percentiles 218
14.8 Quantile Approximation and Inverting the Lugannani-Rice Formula 219
14.9 The Multidimensional Case 221
14.10 Exercises .. 222
References .. 223

15 U-statistics ... 225
15.1 Examples .. 226
15.2 Asymptotic Distribution of U-statistics 227
15.3 Moments of U-statistics and the Martingale Structure ... 229
15.4 Edgeworth Expansions 230
15.5 Nonnormal Limits 232
16 Maximum Likelihood Estimates ... 235
16.1 Some Examples ... 235
16.2 Inconsistent MLEs ... 239
16.3 MLEs in the Exponential Family 240
16.4 More General Cases and Asymptotic Normality 242
16.5 Observed and Expected Fisher Information 244
16.6 Edgeworth Expansions for MLEs 245
16.7 Asymptotic Optimality of the MLE and Superefficiency 247
16.8 Hajek-Le Cam Convolution Theorem 249
16.9 Loss of Information and Efron’s Curvature 251
16.10 Exercises ... 253
References .. 258

17 M Estimates .. 259
17.1 Examples .. 260
17.2 Consistency and Asymptotic Normality 262
17.3 Bahadur Expansion of M Estimates 265
17.4 Exercises .. 267
References .. 268

18 The Trimmed Mean ... 271
18.1 Asymptotic Distribution and the Bahadur Representation 271
18.2 Lower Bounds on Efficiencies 273
18.3 Multivariate Trimmed Mean .. 273
18.4 The 10-20-30-40 Rule .. 275
18.5 Exercises .. 277
References .. 278

19 Multivariate Location Parameter and Multivariate Medians . 279
19.1 Notions of Symmetry of Multivariate Data 279
19.2 Multivariate Medians ... 280
19.3 Asymptotic Theory for Multivariate Medians 282
19.4 The Asymptotic Covariance Matrix 283
19.5 Asymptotic Covariance Matrix of the L_1 Median 284
19.6 Exercises .. 287
References .. 288
23.3 Large Deviation for Local Limit Theorems 370
23.4 Exercises ... 374
References ... 375

24 Classical Nonparametrics .. 377
24.1 Some Early Illustrative Examples 378
24.2 Sign Test .. 380
24.3 Consistency of the Sign Test ... 381
24.4 Wilcoxon Signed-Rank Test .. 383
24.5 Robustness of the t Confidence Interval 388
24.6 The Bahadur-Savage Theorem 393
24.7 Kolmogorov-Smirnov and Anderson Confidence Intervals ... 394
24.8 Hodges-Lehmann Confidence Interval 396
24.9 Power of the Wilcoxon Test .. 397
24.10 Exercises ... 398
References ... 399

25 Two-Sample Problems .. 401
25.1 Behrens-Fisher Problem ... 402
25.2 Wilcoxon Rank Sum and Mann-Whitney Test 405
25.3 Two-Sample U-statistics and Power Approximations 408
25.4 Hettmansperger’s Generalization 410
25.5 The Nonparametric Behrens-Fisher Problem 412
25.6 Robustness of the Mann-Whitney Test 415
25.7 Exercises ... 417
References ... 418

26 Goodness of Fit .. 421
26.1 Kolmogorov-Smirnov and Other Tests Based on F_n 422
26.2 Computational Formulas ... 422
26.3 Some Heuristics .. 423
26.4 Asymptotic Null Distributions of D_n, C_n, A_n, and V_n 424
26.5 Consistency and Distributions under Alternatives 425
26.6 Finite Sample Distributions and Other EDF-Based Tests ... 426
26.7 The Berk-Jones Procedure .. 428
26.8 ϕ-Divergences and the Jager-Wellner Tests 429
26.9 The Two-Sample Case .. 431
26.10 Tests for Normality ... 434
26.11 Exercises ... 436
References ... 438
27 Chi-square Tests for Goodness of Fit 441
27.1 The Pearson χ^2 Test 441
27.2 Asymptotic Distribution of Pearson’s Chi-square 442
27.3 Asymptotic Distribution under Alternatives and Consistency .. 442
27.4 Choice of k ... 443
27.5 Recommendation of Mann and Wald 445
27.6 Power at Local Alternatives and Choice of k 445
27.7 Exercises .. 448
References ... 449

28 Goodness of Fit with Estimated Parameters 451
28.1 Preliminary Analysis by Stochastic Expansion 452
28.2 Asymptotic Distribution of EDF-Based Statistics for Composite Nulls 453
28.3 Chi-square Tests with Estimated Parameters and the Chernoff-Lehmans Result 455
28.4 Chi-square Tests with Random Cells 457
28.5 Exercises .. 457
References ... 458

29 The Bootstrap .. 461
29.1 Bootstrap Distribution and the Meaning of Consistency .. 462
29.2 Consistency in the Kolmogorov and Wasserstein Metrics .. 464
29.3 Delta Theorem for the Bootstrap 468
29.4 Second-Order Accuracy of the Bootstrap 468
29.5 Other Statistics .. 471
29.6 Some Numerical Examples 473
29.7 Failure of the Bootstrap 475
29.8 m out of n Bootstrap 476
29.9 Bootstrap Confidence Intervals 478
29.10 Some Numerical Examples 482
29.11 Bootstrap Confidence Intervals for Quantiles 483
29.12 Bootstrap in Regression 483
29.13 Residual Bootstrap .. 484
29.14 Confidence Intervals 485
29.15 Distribution Estimates in Regression 486
29.16 Bootstrap for Dependent Data 487
29.17 Consistent Bootstrap for Stationary Autoregression 488
32.15 Multivariate Density Estimation and Curse of Dimensionality
- 32.15.1 Kernel Estimates and Optimal Bandwidths

32.16 Estimating a Unimodal Density and the Grenander Estimate
- 32.16.1 The Grenander Estimate

32.17 Mode Estimation and Chernoff’s Distribution

32.18 Exercises

References

33 Mixture Models and Nonparametric Deconvolution
- 33.1 Mixtures as Dense Families
- 33.2 Distributions and Other Gaussian Mixtures as Useful Models
- 33.3 Estimation Methods and Their Properties: Finite Mixtures
- 33.3.1 Maximum Likelihood
- 33.3.2 Minimum Distance Method
- 33.3.3 Moment Estimates
- 33.4 Estimation in General Mixtures
- 33.5 Strong Consistency and Weak Convergence of the MLE
- 33.6 Convergence Rates for Finite Mixtures and Nonparametric Deconvolution
- 33.6.1 Nonparametric Deconvolution
- 33.7 Exercises

References

34 High-Dimensional Inference and False Discovery
- 34.1 Chi-square Tests with Many Cells and Sparse Multinomials
- 34.2 Regression Models with Many Parameters: The Portnoy Paradigm
- 34.3 Multiple Testing and False Discovery: Early Developments
- 34.4 False Discovery: Definitions, Control, and the Benjamini-Hochberg Rule
- 34.5 Distribution Theory for False Discoveries and Poisson and First-Passage Asymptotics
- 34.6 Newer FDR Controlling Procedures
- 34.6.1 Storey-Taylor-Siegmund Rule
- 34.7 Higher Criticism and the Donoho-Jin Developments

References
34.8 False Nondiscovery and Decision Theory Formulation . . . 611
 34.8.1 Genovese-Wasserman Procedure 612
34.9 Asymptotic Expansions 614
34.10 Lower Bounds on the Number of False Hypotheses 616
 34.10.1 Bühlmann-Meinshausen-Rice Method 617
34.11 The Dependent Case and the Hall-Jin Results 620
 34.11.1 Increasing and Multivariate Totally
 Positive Distributions 620
 34.11.2 Higher Criticism under Dependence:
 Hall-Jin Results 623
34.12 Exercises .. 625
References .. 628

35 A Collection of Inequalities in Probability, Linear Algebra,
and Analysis .. 633
35.1 Probability Inequalities 633
 35.1.1 Improved Bonferroni Inequalities 633
 35.1.2 Concentration Inequalities 634
 35.1.3 Tail Inequalities for Specific Distributions 639
 35.1.4 Inequalities under Unimodality 641
 35.1.5 Moment and Monotonicity Inequalities 643
 35.1.6 Inequalities in Order Statistics 652
 35.1.7 Inequalities for Normal Distributions 655
 35.1.8 Inequalities for Binomial and Poisson
 Distributions 656
 35.1.9 Inequalities in the Central Limit Theorem 658
 35.1.10 Martingale Inequalities 661
35.2 Matrix Inequalities 663
 35.2.1 Rank, Determinant, and Trace Inequalities 663
 35.2.2 Eigenvalue and Quadratic Form Inequalities ... 667
35.3 Series and Polynomial Inequalities 671
35.4 Integral and Derivative Inequalities 675

Glossary of Symbols ... 689

Index ... 693
Asymptotic Theory of Statistics and Probability
DasGupta, A.
2008, XXVI, 722 p., Hardcover