Contents

1 **Modeling Transportation Systems: Preliminary Concepts and Application Areas** .. 1
 1.1 Introduction ... 1
 1.2 Transportation Systems ... 1
 1.3 Transportation System Identification 5
 1.3.1 Relevant Spatial Dimensions ... 6
 1.3.2 Relevant Temporal Dimensions 9
 1.3.3 Relevant Components of Travel Demand 13
 1.4 Modeling Transportation Systems ... 17
 1.5 Model Applications and Transportation Systems Engineering 20
 1.5.1 Transportation Systems Design and the Decision-Making
 Process ... 20
 1.5.2 Some Areas of Application .. 24
 Reference Notes .. 27

2 **Transportation Supply Models** .. 29
 2.1 Introduction ... 29
 2.2 Fundamentals of Traffic Flow Theory 29
 2.2.1 Uninterrupted Flows ... 30
 2.2.1.1 Fundamental Variables .. 30
 2.2.1.2 Model Formulation .. 32
 2.2.2 Queuing Models ... 36
 2.2.2.1 Fundamental Variables .. 37
 2.2.2.2 Deterministic Models ... 39
 2.2.2.3 Stochastic Models .. 43
 2.3 Congested Network Models .. 45
 2.3.1 Network Structure ... 45
 2.3.2 Flows ... 46
 2.3.3 Performance Variables and Transportation Costs 48
 2.3.4 Link Performance and Cost Functions 53
 2.3.5 Impacts and Impact Functions 54
 2.3.6 General Formulation ... 55
 2.4 Applications of Transportation Supply Models 56
 2.4.1 Supply Models for Continuous Service Transportation
 Systems ... 59
 2.4.1.1 Graph Models ... 59
 2.4.1.2 Link Performance and Cost Functions 61
 2.4.2 Supply Models for Scheduled Service Transportation
 Systems ... 82
 2.4.2.1 Line-based Graph Models 83
 2.4.2.2 Link Performance and Cost Functions 83
 Reference Notes .. 87
3 Random Utility Theory

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>89</td>
</tr>
<tr>
<td>3.2</td>
<td>Basic Assumptions</td>
<td>89</td>
</tr>
<tr>
<td>3.3</td>
<td>Some Random Utility Models</td>
<td>90</td>
</tr>
<tr>
<td>3.3.1</td>
<td>The Multinomial Logit Model</td>
<td>95</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Single-Level Hierarchical Logit Model</td>
<td>100</td>
</tr>
<tr>
<td>3.3.3</td>
<td>The Multilevel Hierarchical Logit Model*</td>
<td>107</td>
</tr>
<tr>
<td>3.3.4</td>
<td>The Cross-nested Logit Model*</td>
<td>115</td>
</tr>
<tr>
<td>3.3.5</td>
<td>The Generalized Extreme Value (GEV) Model*</td>
<td>118</td>
</tr>
<tr>
<td>3.3.6</td>
<td>The Probit Model</td>
<td>121</td>
</tr>
<tr>
<td>3.3.7</td>
<td>The Mixed Logit Model*</td>
<td>130</td>
</tr>
<tr>
<td>3.4</td>
<td>Expected Maximum Perceived Utility and Mathematical Properties of Random Utility Models</td>
<td>133</td>
</tr>
<tr>
<td>3.5</td>
<td>Choice Set Modeling</td>
<td>139</td>
</tr>
<tr>
<td>3.6</td>
<td>Direct and Cross-elasticities of Random Utility Models</td>
<td>143</td>
</tr>
<tr>
<td>3.7</td>
<td>Aggregation Methods for Random Utility Models</td>
<td>148</td>
</tr>
<tr>
<td>3.A</td>
<td>Derivation of Logit Models from the GEV Model</td>
<td>152</td>
</tr>
<tr>
<td>3.A.1</td>
<td>Derivation of the Multinomial Logit Model</td>
<td>153</td>
</tr>
<tr>
<td>3.A.2</td>
<td>Derivation of the Single-Level Hierarchical Logit Model</td>
<td>154</td>
</tr>
<tr>
<td>3.A.3</td>
<td>Derivation of the Multilevel Hierarchical Logit Model</td>
<td>156</td>
</tr>
<tr>
<td>3.A.4</td>
<td>Derivation of the Cross-nested Logit Model</td>
<td>159</td>
</tr>
<tr>
<td>3.B.1</td>
<td>The Gumbel Random Variable</td>
<td>161</td>
</tr>
<tr>
<td>3.B.2</td>
<td>The Multivariate Normal Random Variable</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Reference Notes</td>
<td>166</td>
</tr>
</tbody>
</table>

4 Travel-Demand Models

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>169</td>
</tr>
<tr>
<td>4.2</td>
<td>Trip-based Demand Model Systems</td>
<td>172</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Random Utility Models for Trip Demand</td>
<td>176</td>
</tr>
<tr>
<td>4.3</td>
<td>Examples of Trip-based Demand Models</td>
<td>181</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Models of Spatial and Temporal Characteristics</td>
<td>181</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>Trip Production or Trip Frequency Models</td>
<td>181</td>
</tr>
<tr>
<td>4.3.1.2</td>
<td>Distribution Models</td>
<td>185</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Mode Choice Models</td>
<td>192</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Path Choice Models</td>
<td>195</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Path Choice Models for Road Networks</td>
<td>197</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Path Choice Models for Transit Systems</td>
<td>207</td>
</tr>
<tr>
<td>4.3.4</td>
<td>A System of Demand Models</td>
<td>215</td>
</tr>
<tr>
<td>4.4</td>
<td>Trip-Chaining Demand Models</td>
<td>219</td>
</tr>
<tr>
<td>4.5</td>
<td>Activity-Based Demand Models</td>
<td>228</td>
</tr>
<tr>
<td>4.5.1</td>
<td>A Theoretical Reference Framework</td>
<td>231</td>
</tr>
<tr>
<td>4.5.1.1</td>
<td>Weekly Household Activity Model</td>
<td>232</td>
</tr>
<tr>
<td>4.5.1.2</td>
<td>Daily Household Activity Model</td>
<td>233</td>
</tr>
<tr>
<td>4.5.1.3</td>
<td>Daily Individual Activity List Model</td>
<td>234</td>
</tr>
<tr>
<td>4.5.1.4</td>
<td>Activity Pattern and Trip-Chain Models</td>
<td>234</td>
</tr>
</tbody>
</table>
4.6 Applications of Demand Models .. 235
4.7 Freight Transportation Demand Models 238
 4.7.1 Multiregional Input–Output (MRIO) models 240
 4.7.2 Freight Mode Choice Models ... 253
Reference Notes ... 255

5 Basic Static Assignment to Transportation Networks 259
 5.1 Introduction .. 259
 5.1.1 Classification of Assignment Models 259
 5.1.2 Fields of Application of Assignment Models 263
 5.2 Definitions, Assumptions, and Basic Equations 265
 5.2.1 Supply Model .. 266
 5.2.2 Demand Model .. 269
 5.2.3 Feasible Path and Link Flow Sets 274
 5.2.4 Network Performance Indicators 275
 5.3 Uncongested Networks ... 278
 5.3.1 Models for Stochastic Assignment 280
 5.3.2 Models for Deterministic Assignment 283
 5.3.3 Algorithms Without Explicit Path Enumeration 286
 5.4 Congested Networks: Equilibrium Assignment 304
 5.4.1 Models for Stochastic User Equilibrium 307
 5.4.2 Algorithms for Stochastic User Equilibrium 313
 5.4.3 Models for Deterministic User Equilibrium 318
 5.4.4 Algorithms for Deterministic User Equilibrium 324
 5.4.5 Relationship Between Stochastic and Deterministic Equilibrium . 329
 5.4.6 System Optimum Assignment ... 331
 5.5 Result Interpretation and Parameter Calibration 338
 5.5.1 Specification and Calibration of Assignment Models 341
 5.A Optimization Models for Stochastic Assignment 341
 5.A.1 Uncongested Network: Stochastic Assignment 342
 5.A.2 Congested Network: Stochastic User Equilibrium 342
Reference Notes .. 344
 Assignment Models ... 344
 Assignment Algorithms .. 346

6 Advanced Models for Traffic Assignment to Transportation Networks .. 349
 6.1 Introduction .. 349
 6.2 Assignment with Pre-trip/En-route Path Choice 349
 6.2.1 Definitions, Assumptions, and Basic Equations 349
 6.2.2 Uncongested Networks .. 357
 6.2.3 Congested Networks: Equilibrium Assignment 363
 6.3 Equilibrium Assignment with Variable Demand 367
 6.3.1 Single-Mode Assignment .. 368
6.3.1.1 Models for Stochastic User Equilibrium	372
6.3.1.2 Models for Deterministic User Equilibrium	375
6.3.1.3 Algorithms	379
6.3.2 Multimode Equilibrium Assignment	385
6.4 Multiclass Assignment	389
6.4.1 Undifferentiated Congestion Multiclass Assignment	392
6.4.2 Differentiated Congestion Multiclass Assignment	394
6.5 Interperiod Dynamic Process Assignment	396
6.5.1 Definitions, Assumptions, and Basic Equations	398
6.5.2 Deterministic Process Models	403
6.5.3 Stochastic Process Models	410
6.6 Synthesis and Application Issues	419
Reference Notes	419

7 Intraperiod (Within-Day) Dynamic Models* 421

7.1 Introduction 421
7.2 Supply Models for Transport Systems with Continuous Service 423
7.2.1 Space-Discrete Macroscopic Models 426
7.2.1.1 Variables and Consistency Conditions 426
7.2.1.2 Network Flow Propagation Model 435
7.2.1.3 Link Performance and Travel Time Functions 438
7.2.1.4 Dynamic Network Loading 439
7.2.1.5 Path Performance and Travel Time Functions 440
7.2.1.6 Formalization of the Whole Supply Model 442
7.2.2 Mesoscopic Models 443
7.2.2.1 Variables and Consistency Conditions 444
7.2.2.2 Link Performance and Travel Time Functions 447
7.2.2.3 Path Performance and Travel Time Functions 448
7.2.2.4 Dynamic Network Loading 449
7.2.2.5 Formalization of the Whole Supply Model 450
7.3 Demand Models for Continuous Service Systems 451
7.4 Demand–Supply Interaction Models for Continuous Service Systems 455
7.4.1 Uncongested Network Assignment Models 455
7.4.2 User Equilibrium Assignment Models 458
7.4.3 Dynamic Process Assignment Models 461
7.5 Dynamic Traffic Assignment with Nonseparable Link Cost Functions and Queue Spillovers 464
7.5.1 Network Performance Model 467
7.5.1.1 Exit Capacity Model 472
7.5.1.2 Exit Flow and Travel Time Model 473
7.5.1.3 Entry Capacity Model 475
7.5.1.4 Fixed-Point Formulation of the NPM 477
7.5.2 Network Loading Map and Fixed-Point Formulation of the
Equilibrium Model 477
7.6 Models for Transport Systems with Scheduled Services 480
 7.6.1 Models for Regular Low-Frequency Services 482
 7.6.1.1 Supply Models 482
 7.6.1.2 Demand Models 487
 7.6.1.3 Demand–Supply Interaction Models 489
 7.6.2 Models for Irregular High-Frequency Services 489
 7.6.2.1 Supply Models 489
 7.6.2.2 Demand Models 490
 7.6.2.3 Demand–Supply Interaction Models 495
7.A The Simplified Theory of Kinematic Waves Based on Cumulative
Flows: Application to Macroscopic Link Performance Models 497
 7.A.1 Bottlenecks 499
 7.A.2 Segments .. 501
Reference Notes .. 510

8 Estimation of Travel Demand Flows 513
 8.1 Introduction .. 513
 8.2 Direct Estimation of Present Demand 514
 8.2.1 Sampling Surveys 514
 8.2.2 Sampling Estimators 516
 8.3 Disaggregate Estimation of Demand Models 520
 8.3.1 Model Specification 521
 8.3.2 Model Calibration 522
 8.3.3 Model Validation 530
 8.4 Disaggregate Estimation of Demand Models with Stated
Preference Surveys* 536
 8.4.1 Definitions and Types of Survey 537
 8.4.2 Survey Design 538
 8.4.3 Model Calibration 545
 8.5 Estimation of O-D Demand Flows Using Traffic Counts 549
 8.5.1 Maximum Likelihood and GLS Estimators 555
 8.5.2 Bayesian Estimators 560
 8.5.3 Application Issues 562
 8.5.4 Solution Methods 564
 8.6 Aggregate Calibration of Demand Models Using Traffic Counts ... 569
 8.7 Estimation of Within-Period Dynamic Demand Flows Using
Traffic Counts ... 574
 8.7.1 Simultaneous Estimators 578
 8.7.2 Sequential Estimators 579
 8.8 Real-Time Estimation and Prediction of Within-Period Dynamic
Demand Flows Using Traffic Counts 580
 8.9 Applications of Demand Estimation Methods 582
9 Transportation Supply Design Models ... 589
 9.1 Introduction ... 589
 9.2 General Formulations of the Supply Design Problem 592
 9.3 Applications of Supply Design Models 595
 9.3.1 Models for Road Network Layout Design 596
 9.3.2 Models for Road Network Capacity Design 598
 9.3.3 Models for Transit Network Design 602
 9.3.4 Models for Pricing Design 604
 9.3.5 Models for Mixed Design 606
 9.4 Some Algorithms for Supply Design Models 607
 9.4.1 Algorithms for the Discrete SDP 607
 9.4.2 Algorithms for the Continuous SDP 614
 Reference Notes ... 619

10 Methods for the Evaluation and Comparison of Transportation
 System Projects .. 621
 10.1 Introduction .. 621
 10.2 Evaluation of Transportation System Projects 622
 10.2.1 Identification of Relevant Impacts 623
 10.2.2 Identification and Estimation of Impact Indicators 626
 10.2.3 Computation of Users’ Surplus Changes 628
 10.3 Methods for the Comparison of Alternative Projects 641
 10.3.1 Benefit-Cost Analysis .. 641
 10.3.2 Revenue-Cost Analysis ... 647
 10.3.3 Multi-criteria Analysis .. 648
 10.3.3.1 Noncompensatory Methods* 658
 10.3.3.2 Multiattribute Utility Theory Method (MAUT)* 660
 10.3.3.3 Linear Additive Methods* 665
 10.3.3.4 The Analytical Hierarchy Process (AHP)* 667
 10.3.3.5 Outranking Methods* .. 673
 10.3.3.6 Constrained Optimization Method* 677
 Reference Notes ... 680

Appendix A Review of Numerical Analysis 683
 A.1 Sets and Functions ... 683
 A.1.1 Elements of Set Topology 683
 A.1.2 Continuous and Differentiable Functions 685
 A.1.3 Convex Functions ... 689
 A.2 Solution Algorithms ... 690
 A.3 Fixed-Point Problems ... 691
 A.3.1 Properties of Fixed-Points 693
 A.3.2 Solution Algorithms for Fixed-Point Problems 695
Contents

A.4 Optimization Problems .. 697
 A.4.1 Properties of Minimum Points .. 697
 A.4.1.1 Properties of Minimum Points on Open Sets 697
 A.4.1.2 Properties of Minimum Points on Closed Sets 698
 A.4.2 Solution Algorithms for Optimization Problems 699
 A.4.2.1 Monodimensional Optimization Algorithms 699
 A.4.2.2 Unconstrained Multidimensional Optimization
 Algorithms ... 703
 A.4.2.3 Bounded Variables Multidimensional
 Optimization Algorithms 706
 A.4.2.4 Linearly Constrained Multidimensional
 Optimization Algorithms 707
A.5 Variational Inequality Problems 709
 A.5.1 Properties of Variational Inequalities 711
 A.5.2 Solution Algorithms for Variational Inequality Problems ... 712

Index .. 715

References .. 725
Transportation Systems Analysis
Models and Applications
Cascetta, E.
2009, XVIII, 742 p. 100 illus., Hardcover