Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 A Brief Introduction</td>
<td>1</td>
</tr>
<tr>
<td>0.1 Notational Conventions</td>
<td>2</td>
</tr>
<tr>
<td>0.2 Typesetting</td>
<td>3</td>
</tr>
<tr>
<td>0.3 Basic Mathematical Functions</td>
<td>5</td>
</tr>
<tr>
<td>0.4 Using Functions</td>
<td>7</td>
</tr>
<tr>
<td>0.5 Replacements</td>
<td>12</td>
</tr>
<tr>
<td>0.6 Lists</td>
<td>13</td>
</tr>
<tr>
<td>0.7 Getting Information</td>
<td>15</td>
</tr>
<tr>
<td>0.8 Algebraic Manipulations</td>
<td>17</td>
</tr>
<tr>
<td>0.9 Customizing Mathematica</td>
<td>19</td>
</tr>
<tr>
<td>0.10 Comprehensive Data Sets in Mathematica</td>
<td>19</td>
</tr>
<tr>
<td>1 Plotting</td>
<td>23</td>
</tr>
<tr>
<td>1.1 Plot</td>
<td>24</td>
</tr>
<tr>
<td>1.2 An Arcsin Curiosity</td>
<td>26</td>
</tr>
<tr>
<td>1.3 Adaptive Plotting</td>
<td>28</td>
</tr>
<tr>
<td>1.4 Plotting Tables and Tabling Plots</td>
<td>31</td>
</tr>
<tr>
<td>1.5 Dealing with Discontinuities</td>
<td>34</td>
</tr>
<tr>
<td>1.6 ListPlot</td>
<td>37</td>
</tr>
<tr>
<td>1.7 ParametricPlot</td>
<td>42</td>
</tr>
<tr>
<td>1.8 Difficult Plots</td>
<td>48</td>
</tr>
<tr>
<td>2 Prime Numbers</td>
<td>53</td>
</tr>
<tr>
<td>2.1 Basic Number Theory Functions</td>
<td>54</td>
</tr>
<tr>
<td>2.2 Where the Primes Are</td>
<td>60</td>
</tr>
<tr>
<td>2.3 The Prime Number Race</td>
<td>66</td>
</tr>
<tr>
<td>2.4 Euclid and Fibonacci</td>
<td>70</td>
</tr>
<tr>
<td>2.5 Strong Pseudoprimers</td>
<td>73</td>
</tr>
<tr>
<td>3 Rolling Circles</td>
<td>77</td>
</tr>
<tr>
<td>3.1 Discovering the Cycloid</td>
<td>78</td>
</tr>
<tr>
<td>3.2 The Derivative of the Trochoid</td>
<td>82</td>
</tr>
<tr>
<td>3.3 Abe Lincoln's Somersaults</td>
<td>84</td>
</tr>
<tr>
<td>3.4 The Cycloid’s Intimate Relationship with Gravity</td>
<td>90</td>
</tr>
<tr>
<td>3.5 Bicycles, Square Wheels, and Square-Hole Drills</td>
<td>98</td>
</tr>
</tbody>
</table>
4 Three-Dimensional Graphs
 4.1 Using Two-Dimensional Tools
 4.2 Plotting Surfaces
 4.3 Mixed Partial Derivatives Need Not Be Equal
 4.4 Failure of the Only-Critical-Point-in-Town Test
 4.5 Raising Contours to New Heights
 4.6 A New View of Pascal's Triangle

5 Dynamic Manipulations
 5.1 Basic Manipulations
 5.2 Control Variations
 5.3 Locators
 5.4 Fine Control
 5.5 Three Case Studies

6 The Cantor Set, Real and Complex
 6.1 The Real Cantor Set
 6.2 The Cantor Function
 6.3 Complex Cantor Sets

7 The Quadratic Map
 7.1 Iterating Functions
 7.2 The Four Flavors of Real Numbers
 7.3 Attracting and Repelling Cycles
 7.4 Measuring Instability: The Lyapunov Exponent
 7.5 Bifurcations

8 The Recursive Turtle
 8.1 The Literate Turtle
 8.2 Space-Filling Curves
 8.3 A Surprising Application
 8.4 Trees, Mathematical and Botanical

9 Parametric Plotting of Surfaces
 9.1 Introduction to ParametricPlot3D
 9.2 A Classic Torus Dissection
 9.3 The Villarceau Circles
 9.4 Beautiful Surfaces
 9.5 A Fractal Tetrahedron
10 Penrose Tiles

10.1 Nonperiodic Tilings 268
10.2 Penrose Tilings 270
10.3 Penrose Rhombs 274

11 Complex Dynamics: Julia Sets and the Mandelbrot set (by Mark McClure) 277

11.1 Complex Dynamics 278
11.2 Julia Sets and Inverse Iteration 284
11.3 Escape Time Algorithms and the Mandelbrot Set 292

12 Solving Equations 301

12.1 Solve 302
12.2 Diophantine Equations 306
12.3 LinearSolve 310
12.4 NSolve 312
12.5 FindRoot 314
12.6 Finding All Roots in an Interval 315
12.7 FindRoots2D 318
12.8 Two Applications 322

13 Optimization 329

13.1 FindMinimum 330
13.2 Algebraic Optimization 333
13.3 Linear Programming and Its Cousins 334
13.4 Case Study: Interval Methods for a SIAM Challenge 346
13.5 Case Study: Shadowing Chaotic Maps 353
13.6 Case Study: Finding the Best Cubic 360

14 Differential Equations 363

14.1 Solving Differential Equations 364
14.2 Stylish Plots 367
14.3 Pitfalls of Numerical Computing 376
14.4 Basins of Attraction 382
14.5 Modeling 385

15 Computational Geometry 399

15.1 Basic Computational Geometry 400
15.2 The Art Gallery Theorem 404
15.3 A Very Strange Room 406
15.4 More Euclid 413
16 Check Digits and the Pentagon 423
 16.1 The Group of the Pentagon 424
 16.2 The Perfect Dihedral Method 427

17 Coloring Planar Maps 431
 17.1 Introduction to Combinatorica 432
 17.2 Planar Maps 437
 17.3 Euler’s Formula 441
 17.4 Kempe’s Attempt 445
 17.5 Kempe Resurrected 449
 17.6 Map Coloring 458
 17.7 A Great Circle Conjecture 468

18 New Directions for \(\pi \) 473
 18.1 The Classical Theory of \(\pi \) 474
 18.2 The Postmodern Theory of \(\pi \) 480
 18.3 A Most Depressing Proof 483
 18.4 Variations on the Theme 488

19 The Banach-Tarski Paradox 491
 19.1 A Paradoxical Free Product 492
 19.2 A Hyperbolic Representation of the Group 495
 19.3 The Geometrical Paradox 499

20 The Riemann Zeta Function 505
 20.1 The Riemann Zeta Function 506
 20.2 The Influence of the Zeros of \(\zeta \) on the Distribution of Primes 512
 20.3 A Backwards Look at Riemann’s \(R(x) \) 519

21 Miscellany 523
 21.1 An Educational Integral 524
 21.2 Making the Alternating Harmonic Series Disappear 525
 21.3 Bulletproof Prime Numbers 528
 21.4 Gaussian Moats 530
 21.5 Frobenius Number by Graphs 536
 21.6 Benford’s Law of First Digits 542

References 557

Mathematica Index 566

Subject Index 572
Mathematica® in Action
Problem Solving Through Visualization and Computation
Wagon, S.